OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 23960–23970

Coherent stitching of light in multilayered diffractive optical elements

Mi Li Ng, Debashis Chanda, and Peter R. Herman  »View Author Affiliations


Optics Express, Vol. 20, Issue 21, pp. 23960-23970 (2012)
http://dx.doi.org/10.1364/OE.20.023960


View Full Text Article

Enhanced HTML    Acrobat PDF (4008 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diffractive optical elements serve an important function in many dynamic and static optical systems. Multilayered diffractive elements offer powerful opportunity to harness both phase and amplitude modulation for benefits in diffraction efficiency and beam shaping. However, multilayered combinations have been difficult to fabricate and provide only weak diffraction for phase gratings with low refractive index contrast. Femtosecond laser writing of finely-pitched multilayer volume gratings was optimized in bulk fused silica. We identify and quantify an optimum layer-to-layer separation according to Talbot self-imaging planes and present systematic experimental validation of this new approach to enhance otherwise weakly diffracting volume gratings.

© 2012 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.7330) Diffraction and gratings : Volume gratings
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(140.7090) Lasers and laser optics : Ultrafast lasers

ToC Category:
Diffraction and Gratings

History
Original Manuscript: August 27, 2012
Revised Manuscript: September 27, 2012
Manuscript Accepted: October 1, 2012
Published: October 4, 2012

Citation
Mi Li Ng, Debashis Chanda, and Peter R. Herman, "Coherent stitching of light in multilayered diffractive optical elements," Opt. Express 20, 23960-23970 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-21-23960


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Caufield and S. Lu, The Applications of Holography (Wiley-Interscience, 1970).
  2. G. Tricoles, “Computer generated holograms: an historical review,” Appl. Opt.26(20), 4351–4357 (1987). [CrossRef] [PubMed]
  3. G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett.24(12), 811–813 (1999). [CrossRef] [PubMed]
  4. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909 (1969).
  5. D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE Press, 2004).
  6. L. B. Glebov, “Volume holographic elements in a photo-thermo-refractive glass,” J.Hologr. Speckle5(1), 77–84 (2009). [CrossRef]
  7. P. Srisungsitthisunti, O.K. Ersoy, and X. Xu, “Volume Fresnel zone plates fabricated by femtosecond laser direct writing,” Appl. Phys. Lett.90, 11104 (2007).
  8. C. Yang and P. Yeh, “Form birefringence of volume gratings in photopolymers,” Appl. Phys. Lett.69(23), 3468–3470 (1996). [CrossRef]
  9. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett.29(1), 119–121 (2004). [CrossRef] [PubMed]
  10. T. Gerke and R. Piestun, “Aperiodic volume optics,” Nat. Photonics290, 188–193 (2009).
  11. J. Liu, Z. Zhang, Z. Lu, G. Xiao, F. Sun, S. Chang, and C. Flueraru, “Fabrication and stitching of embedded multi-layer micro-gratings in fused silica glass by fs laser pulses,” Appl. Phys. B86(1), 151–154 (2006). [CrossRef]
  12. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett.30(4), 352–354 (2005). [CrossRef] [PubMed]
  13. H. Misawa and S. Juodkazis, 3D Laser Microfabrication, (Wiley-VCH Verlag GmbH & Co., 2006).
  14. T. Clausnitzer, T. Kämpfe, F. Brückner, R. Heinze, E.-B. Kley, and A. Tünnermann, “Reflection-reduced encapsulated transmission grating,” Opt. Lett.33(17), 1972–1974 (2008). [CrossRef] [PubMed]
  15. G. P. Nordin, R. V. Johnson, and A. R. Tanguay., “Diffraction properties of stratified volume holographic optical elements,” Appl. Opt.42, 5274–5283 (2003). [PubMed]
  16. H. Bartelt, “Computer-generated holographic component with optimum light efficiency,” Appl. Opt.23(10), 1499–1502 (1984). [CrossRef] [PubMed]
  17. S. Borgsmüller, S. Noehte, C. Dietrich, T. Kresse, and R. Männer, “Computer-generated stratified diffractive optical elements,” Appl. Opt.42(26), 5274–5283 (2003). [CrossRef] [PubMed]
  18. V. N. Malysh, O. I. Ovcharenko, and N. Osovitskii, “Light diffraction by a layered structure with periodically modulated interfaces,” Opt. Spectrosc.58, 513–516 (1985).
  19. L. E. Hargrove, E. A. Hiedemann, and R. Mertens, “Diffraction of light by two spatially separated parallel ultrasonic waves of different frequency,” Z. Phys.167(3), 326–336 (1962). [CrossRef]
  20. Y. Qiu, Y. Sheng, and C. Beaulieu, “Optimal phase mask for Fiber Brag Grating fabrication,” J. Lightwave Technol.17, 2366–2370 (1999).
  21. D. A. Gremaux and N. C. Gallagher, “Limits of scalar diffraction theory for conducting gratings,” Appl. Opt.32(11), 1948–1953 (1993). [CrossRef] [PubMed]
  22. D. Chanda and P. R. Herman, “Phase tunable multilevel diffractive optical element based single laser exposure fabrication of three-dimensional photonic crystal templates,” Appl. Phys. Lett.91(6), 061122 (2007). [CrossRef]
  23. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71(7), 882–884 (1997). [CrossRef]
  24. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  25. J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett.91(8), 082902 (2007). [CrossRef]
  26. A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett.93(2), 021921 (2008). [CrossRef]
  27. T. Hashimoto, S. Juodkazis, and H. Misawa, “Void recording in silica,” Appl. Phys., A Mater. Sci. Process.83(2), 337–340 (2006). [CrossRef]
  28. S. M. Eaton, M. L. Ng, R. Osellame, and P. R. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids357(11-13), 2387–2391 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited