OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 21 — Oct. 8, 2012
  • pp: 24030–24037

Spoof four-wave mixing for all-optical wavelength conversion

Yongkang Gong, Jungang Huang, Kang Li, Nigel Copner, J. J. Martinez, Leirang Wang, Tao Duan, Wenfu Zhang, and W. H. Loh  »View Author Affiliations

Optics Express, Vol. 20, Issue 21, pp. 24030-24037 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (992 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present for the first time an all-optical wavelength conversion (AOWC) scheme supporting modulation format independency without requiring phase matching. The new scheme is named “spoof” four wave mixing (SFWM) and in contrast to the well-known FWM theory, where the induced dynamic refractive index grating modulates photons to create a wave at a new frequency, the SFWM is different in that the dynamic refractive index grating is generated in a nonlinear Bragg Grating (BG) to excite additional reflective peaks at either side of the original BG bandgap in reflection spectrum. This fundamental difference enable the SFWM to avoid the intrinsic shortcoming of stringent phase matching required in the conventional FWM, and allows AOWC with modulation format transparency and ultrabroad conversion range, which may have great potential applications for next generation of all-optical networks.

© 2012 OSA

OCIS Codes
(230.1150) Optical devices : All-optical devices
(060.1155) Fiber optics and optical communications : All-optical networks
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: August 21, 2012
Revised Manuscript: September 26, 2012
Manuscript Accepted: September 27, 2012
Published: October 5, 2012

Yongkang Gong, Jungang Huang, Kang Li, Nigel Copner, J. J. Martinez, Leirang Wang, Tao Duan, Wenfu Zhang, and W. H. Loh, "Spoof four-wave mixing for all-optical wavelength conversion," Opt. Express 20, 24030-24037 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996). [CrossRef]
  2. S. Subramaniam, M. Azizoglu, and A. K. Somani, “All-optical networks with sparse wavelength conversion,” IEEE/ACM Trans. Netw. 4(4), 544–557 (1996). [CrossRef]
  3. H. Ishikawa, “Ultrafast all-optical signal processing devices,” chapter 6, ISBN 978–0470518205, Wiley (2008).
  4. A. Tzanakaki, M. P. Anastasopoulos, K. Georgakilas, and D. Simeonidou, “Energy aware planning of multiple virtual infrastructuresover converged optical network and IT physical resources,” in Proceedings of ECOC’2011, Switzerland, (2011).
  5. A. Tzanakaki, K. Katrinis, T. Politi, A. Stavdas, M. Pickavet, P. Van Daele, D. Simeonidou, M. J. O’Mahony, S. Aleksi?, L. Wosinska, and P. Monti, “Dimensioning the future pan-European optical network with energy efficiency considerations,” J. Opt. Commun. Netw. 3(4), 272–280 (2011). [CrossRef]
  6. G. S. Zervas, V. Martini, Y. Qin, E. Escalona, R. Nejabati, D. Simeonidou, F. Baroncelli, B. Martini, K. Torkmen, and P. Castoldi, “Service-oriented multigranular optical network architecture for clouds,” J. Opt. Commun. Netw. 2(10), 883–891 (2010). [CrossRef] [PubMed]
  7. N. Amaya, G. S. Zervas, B. R. Rofoee, M. Irfan, Y. Qin, and D. Simeonidou, “Field trial of a 1.5 Tb/s adaptive and gridless OXC supporting elastic 1000-fold all-optical bandwidth granularity,” Opt. Express 19(26), B235–B241 (2011). [CrossRef] [PubMed]
  8. M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “Ultrahigh-speed and widely tunable wavelength conversion based on cross-gain modulation in a quantum-dot semiconductor optical amplifier,” Opt. Express 19(26), B551–B559 (2011). [CrossRef]
  9. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-Modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett. 18(1), 298–300 (2006). [CrossRef] [PubMed]
  10. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 mum femtosecond pulses,” Opt. Express 14(18), 8336–8346 (2006). [CrossRef]
  11. J. B. Driscoll, W. B. Astar, X. B. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and J. R. M. Osgood, “All-optical wavelength conversion of 10 Gb/s RZ-OOK data in a silicon nanowire via cross-phase modulation: experiment and theoretical investigation,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1448–1459 (2010). [CrossRef] [PubMed]
  12. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-microm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23(13), 1004–1006 (1998). [CrossRef]
  13. G. W. Lu, K. K. Abedin, and T. Miyazaki, “All-optical RZ-DPSK WDM to RZ-DQPSK phase multiplexing using four-wave mixing in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 19(21), 1699–1701 (2007). [CrossRef] [PubMed]
  14. T. Andersen, K. Hilligsøe, C. Nielsen, J. Thøgersen, K. Hansen, S. Keiding, and J. Larsen, “Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths,” Opt. Express 12(17), 4113–4122 (2004). [CrossRef]
  15. H. Ahmad, N. A. Awang, A. A. Latif, M. Z. Zulkifli, Z. A. Ghani, and S. W. Harun, “Wavelength conversion based on four-wave mixing in a highly nonlinear fiber in ring configuration,” Laser Phys. Lett. 8(10), 742–746 (2011). [CrossRef] [PubMed]
  16. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006). [CrossRef] [PubMed]
  17. R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett. 36(7), 1263–1265 (2011). [CrossRef] [PubMed]
  18. Y. H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, and O. Cohen, “Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides,” Opt. Express 14(24), 11721–11726 (2006). [CrossRef] [PubMed]
  19. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010). [CrossRef]
  20. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010). [CrossRef]
  21. S. Singh, “Boost up of four wave mixing signal in semiconductor optical amplifier for 40 Gb/s optical frequency conversion,” Opt. Commun. 281(9), 2618–2626 (2008). [CrossRef] [PubMed]
  22. M. Matsuura, O. Raz, F. Gomez-Agis, N. Calabretta, and H. J. S. Dorren, “320 Gbit/s wavelength conversion using four-wave mixing in quantum-dot semiconductor optical amplifiers,” Opt. Lett. 36(15), 2910–2912 (2011). [CrossRef]
  23. M. Matsuura and N. Kishi, “High-Speed Wavelength Conversion of RZ-DPSK Signal Using FWM in a Quantum-Dot SOA,” IEEE Photon. Technol. Lett. 23(10), 615–617 (2011).
  24. E. Hecht, Optics, 4th ed. (Adison Wesley 2001) Chap. 6. [CrossRef]
  25. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003). [CrossRef]
  26. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007). [CrossRef] [PubMed]
  27. J. B. Driscoll, R. R. Grote, X. P. Liu, J. I. Dadap, N. C. Panoiu, and R. M. Osgood., “Directionally anisotropic Si nanowires: on-chip nonlinear grating devices in uniform waveguides,” Opt. Lett. 36(8), 1416–1418 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited