OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24115–24123

Exploiting few mode-fibers for optical time-stretch confocal microscopy in the short near-infrared window

Yi Qiu, Jingjiang Xu, Kenneth K. Y. Wong, and Kevin K. Tsia  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24115-24123 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1184 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dispersive fiber is well-regarded as the most viable candidate for realizing efficient optical time-stretch process – an ultrafast spectroscopic measurement technique based on the wavelength-to-time mapping via group velocity dispersion (GVD). Despite optical time-stretch has been anticipated to benefit a wide range of high-throughput biomedical diagnoses, the lack of commercially-available dispersive fibers which can operate in the “biomedically-favorable” short near-infrared (~800 nm – 1100 nm) range hinders practical time-stretch-based biomedical spectroscopy and microscopy. We here explore and demonstrate the feasibility of using the standard telecommunication single-mode fibers (e.g. SMF28 and dispersion compensation fiber (DCF)) as few-mode fibers (FMFs) for optical time-stretch confocal microscopy in the 1μm range. By evaluating GVD of different FMF modes and thus the corresponding time-stretch performances, we show that the fundamental modes (LP01) of SMF28 and DCF, having sufficiently high dispersion-to-loss ratios, are particularly useful for practical time-stretch spectroscopy and microscopy at 1 μm, without the need for the specialty 1 μm SMF. More intriguingly, we also show that the higher-order FMF modes (e.g. LP11) could be excited and utilized for time-stretch imaging. Such additional degree of freedom creates a new avenue for optimizing and designing the time-stretch operations, such as by tailored engineering of the modal-dispersion as well as the GVD of the individual FMF modes.

© 2012 OSA

OCIS Codes
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(170.0110) Medical optics and biotechnology : Imaging systems
(170.0180) Medical optics and biotechnology : Microscopy
(170.7160) Medical optics and biotechnology : Ultrafast technology
(180.0180) Microscopy : Microscopy

ToC Category:

Original Manuscript: July 13, 2012
Revised Manuscript: September 15, 2012
Manuscript Accepted: September 16, 2012
Published: October 8, 2012

Yi Qiu, Jingjiang Xu, Kenneth K. Y. Wong, and Kevin K. Tsia, "Exploiting few mode-fibers for optical time-stretch confocal microscopy in the short near-infrared window," Opt. Express 20, 24115-24123 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics2(1), 48–51 (2008). [CrossRef]
  2. K. Goda, D. R. Solli, K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009). [CrossRef]
  3. J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett.92(11), 111102 (2008). [CrossRef]
  4. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express14(24), 11575–11584 (2006). [CrossRef] [PubMed]
  5. T.-J. Ahn, Y. Park, and J. Azaña, “Ultrarapid optical frequency-domain reflectometry based upon dispersion-induced time stretching: principle and applications,” IEEE J. Sel. Top. Quantum Electron.18(1), 148–165 (2012). [CrossRef]
  6. K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett.93(13), 131109 (2008). [CrossRef]
  7. A. M. Fard, A. Mahjoubfar, K. Goda, D. R. Gossett, D. Di Carlo, and B. Jalali, “Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imaging of transparent media,” Biomed. Opt. Express2(12), 3387–3392 (2011). [CrossRef] [PubMed]
  8. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express18(10), 10016–10028 (2010). [CrossRef] [PubMed]
  9. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009). [CrossRef] [PubMed]
  10. C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, and K. K. Tsia, “Serial time-encoded amplified microscopy based on picosecond supercontinuum source,” Opt. Express19, 15810–15816 (2011). [CrossRef] [PubMed]
  11. T.-J. Ahn, Y. Jung, K. Oh, and D. Y. Kim, “Optical frequency-domain chromatic dispersion measurement method for higher-order modes in an optical fiber,” Opt. Express13(25), 10040–10048 (2005). [CrossRef] [PubMed]
  12. F. Yaman, N. Bai, B. Zhu, T. Wang, and G. Li, “Long distance transmission in few-mode fibers,” Opt. Express18(12), 13250–13257 (2010). [CrossRef] [PubMed]
  13. F. Yaman, N. Bai, Y. K. Huang, M. F. Huang, B. Zhu, T. Wang, and G. Li, “10 x 112Gb/s PDM-QPSK transmission over 5032 km in few-mode fibers,” Opt. Express18(20), 21342–21349 (2010). [CrossRef] [PubMed]
  14. S. Ramachandran, “Dispersion-tailored few-mode Fibers: A versatile platform for in-fiber photonic devices,” J. Lightwave Technol.23(11), 3426–3443 (2005). [CrossRef]
  15. T. T. W. Wong, A. K. S. Lau, K. K. Y. Wong, and K. K. Tsia, “Optical time-stretch confocal microscopy at 1um,” Opt. Lett.37(16), 3330–3332 (2012). [CrossRef]
  16. K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser Scanner,” Sci Rep2(445), 1–8 (2012). [PubMed]
  17. P. Hamel, Y. Jaouën, R. Gabet, and S. Ramachandran, “Optical low-coherence reflectometry for complete chromatic dispersion characterization of few-mode fibers,” Opt. Lett.32(9), 1029–1031 (2007). [CrossRef] [PubMed]
  18. S. Ramachandran, Fiber Based Dispersion Compensation, 1st ed. (Springer, 2007).
  19. A. F. Zuluaga, R. Drezek, T. Collier, R. Lotan, M. Follen, and R. Richards-Kortum, “Contrast agents for confocal microscopy: how simple chemicals affect confocal images of normal and cancer cells in suspension,” J. Biomed. Opt.7(3), 398–403 (2002). [CrossRef] [PubMed]
  20. D. Yelin, C. Boudoux, B. E. Bouma, and G. J. Tearney, “Large area confocal microscopy,” Opt. Lett.32(9), 1102–1104 (2007). [CrossRef] [PubMed]
  21. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett.34(14), 2099–2101 (2009). [CrossRef] [PubMed]
  22. C. Boudoux, S. Yun, W. Oh, W. White, N. Iftimia, M. Shishkov, B. Bouma, and G. Tearney, “Rapid wavelength-swept spectrally encoded confocal microscopy,” Opt. Express13(20), 8214–8221 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited