OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24151–24159

Encoding photonic angular momentum information onto surface plasmon polaritons with plasmonic lens

Aiping Liu, Guanghao Rui, Xifeng Ren, Qiwen Zhan, Guangcan Guo, and Guoping Guo  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24151-24159 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1248 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Both spin angular momentum (SAM) and orbital angular momentum (OAM) can be used to carry information in classical optics and quantum optics. In this paper, the encoding of angular momentum (AM) information of photons onto surface plasmon polaritons (SPPs) is demonstrated using a nano-ring plamonic lens. Near-field energy distribution on the metal surface is measured using a near-field scanning optical microscope (NSOM) when the plasmonic lens is excited by photons with different combinations of SAM and OAM. It is found that both the SAM and OAM can influence the near field energy distribution of SPPs. More interestingly, numerical and experimental studies reveal that the energy distribution on the plasmonic lens surface is determined by the absolute value of the total AM. This gives direct evidences that SPPs can be encoded with the photonic SAM and OAM information simultaneously and the spin degeneracy of the photons can be removed using the interactions between photonic OAM and plasmonic lens. The findings are useful not only for the fundamental understanding of the photonic AM but also for the future design of plasmonic quantum optics devices and systems.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(050.4865) Diffraction and gratings : Optical vortices
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: July 30, 2012
Revised Manuscript: September 6, 2012
Manuscript Accepted: September 29, 2012
Published: October 8, 2012

Aiping Liu, Guanghao Rui, Xifeng Ren, Qiwen Zhan, Guangcan Guo, and Guoping Guo, "Encoding photonic angular momentum information onto surface plasmon polaritons with plasmonic lens," Opt. Express 20, 24151-24159 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  2. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995). [CrossRef] [PubMed]
  3. K. Dholakia, G. Spalding, and M. MacDonald, “Optical tweezers: The next generation,” Phys. World15, 31–35 (2002).
  4. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003). [CrossRef] [PubMed]
  5. P. C. Maurer, J. R. Maze, P. L. Stanwix, L. Jiang, A. V. Gorshkov, A. A. Zibrov, B. Harke, J. S. Hodges, A. S. Zibrov, A. Yacoby, D. Twitchen, S. W. Hell, R. L. Walsworth, and M. D. Lukin, “Far-field optical imaging and manipulation of individual spins with nanoscale resolution,” Nat. Phys.6(11), 912–918 (2010). [CrossRef]
  6. R. J. Voogd, M. Singh, S. Pereira, A. van de Nes, and J. Braat, “The use of orbital angular momentum of light beams for super-high density optical data storage,” in OSA Annual Meeting FTuG14(Optical Society of America, Rochester, New York, 2004).
  7. S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol.21(11), 1347–1355 (2003). [CrossRef] [PubMed]
  8. L. Torner, J. Torres, and S. Carrasco, “Digital spiral imaging,” Opt. Express13(3), 873–881 (2005). [CrossRef] [PubMed]
  9. S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express14(9), 3792–3805 (2006). [CrossRef] [PubMed]
  10. J. G. A. Swartzlander., “The optical vortex lens,” Opt. Photon. News17(11), 39–43 (2006). [CrossRef]
  11. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express12(22), 5448–5456 (2004). [CrossRef] [PubMed]
  12. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001). [CrossRef] [PubMed]
  13. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett.89(24), 240401 (2002). [CrossRef] [PubMed]
  14. X.-F. Ren, G.-P. Guo, B. Yu, J. Li, and G.-C. Guo, “The orbital angular momentum of down-converted photons,” J. Opt. B Quantum Semiclassical Opt.6(4), 243–247 (2004). [CrossRef]
  15. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3(5), 305–310 (2007). [CrossRef]
  16. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  17. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  18. X. F. Ren, G. P. Guo, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Influence of unsymmetrical periodicity on extraordinary transmission through periodic arrays of subwavelength holes,” Appl. Phys. Lett.90(16), 161112 (2007). [CrossRef]
  19. X. F. Ren, G. P. Guo, P. Zhang, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Removal of surface plasmon polariton eigenmodes degeneracy,” Appl. Phys. B89(2-3), 257–260 (2007). [CrossRef]
  20. F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010). [CrossRef]
  21. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett.29(10), 1069–1071 (2004). [CrossRef] [PubMed]
  22. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  23. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett.79(1), 51–53 (2001). [CrossRef]
  24. R. M. Dickson and L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B104(26), 6095–6098 (2000). [CrossRef]
  25. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, “Observation of plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett.6(8), 1822–1826 (2006). [CrossRef] [PubMed]
  26. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005). [CrossRef] [PubMed]
  27. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett.9(12), 4320–4325 (2009). [CrossRef] [PubMed]
  28. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett.9(5), 2139–2143 (2009). [CrossRef] [PubMed]
  29. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett.10(5), 1936–1940 (2010). [CrossRef] [PubMed]
  30. G. P. Guo, R. Yang, X. F. Ren, L. L. Wang, H. Y. Shi, B. Hu, S. H. Yu, and G. C. Guo, “Excitation of surface plasmons in a single silver nanowire using higher-order-mode light,” Physica E42(5), 1751–1754 (2010). [CrossRef]
  31. V. E. Lembessis, S. Al-Awfi, M. Babiker, and D. L. Andrews, “Surface plasmon optical vortices and their influence on atoms,” J. Opt.13(6), 064002 (2011). [CrossRef]
  32. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett.101(4), 043903 (2008). [CrossRef] [PubMed]
  33. Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett.9(8), 3016–3019 (2009). [CrossRef] [PubMed]
  34. H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010). [CrossRef] [PubMed]
  35. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature418(6895), 304–306 (2002). [CrossRef] [PubMed]
  36. X. F. Ren, G. P. Guo, Y. F. Huang, C. F. Li, and G. C. Guo, “Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state,” Europhys. Lett.76(5), 753–759 (2006). [CrossRef]
  37. Z. Jacob and V. M. Shalaev, “Physics. Plasmonics goes quantum,” Science334(6055), 463–464 (2011). [CrossRef] [PubMed]
  38. X. F. Ren, G. P. Guo, Y. F. Huang, Z. W. Wang, and G. C. Guo, “Spatial mode properties of plasmon-assisted transmission,” Opt. Lett.31(18), 2792–2794 (2006). [CrossRef] [PubMed]
  39. S. W. Cho, J. Park, S. Y. Lee, H. Kim, and B. Lee, “Coupling of spin and angular momentum of light in plasmonic vortex,” Opt. Express20(9), 10083–10094 (2012). [CrossRef] [PubMed]
  40. D. Van Labeke and D. Barchiesi, “Probes for scanning tunneling optical microscopy: A theoretical comparison,” J. Opt. Soc. Am. A10(10), 2193–2201 (1993). [CrossRef]
  41. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  42. X. F. Ren, A. P. Liu, C. L. Zou, L. L. Wang, Y. J. Cai, F. W. Sun, G. C. Guo, and G. P. Guo, “Interference of surface plasmon polaritons from a “point” source,” Appl. Phys. Lett.98(20), 201113 (2011). [CrossRef]
  43. K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, “Coriolis effect in optics: Unified geometric phase and spin-Hall effect,” Phys. Rev. Lett.101(3), 030404 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited