OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24175–24195

Integral imaging based 3D display of holographic data

Ali Özgür Yöntem and Levent Onural  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24175-24195 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (7946 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a method and present applications of this method that converts a diffraction pattern into an elemental image set in order to display them on an integral imaging based display setup. We generate elemental images based on diffraction calculations as an alternative to commonly used ray tracing methods. Ray tracing methods do not accommodate the interference and diffraction phenomena. Our proposed method enables us to obtain elemental images from a holographic recording of a 3D object/scene. The diffraction pattern can be either numerically generated data or digitally acquired optical data. The method shows the connection between a hologram (diffraction pattern) and an elemental image set of the same 3D object. We showed three examples, one of which is the digitally captured optical diffraction tomography data of an epithelium cell. We obtained optical reconstructions with our integral imaging display setup where we used a digital lenslet array. We also obtained numerical reconstructions, again by using the diffraction calculations, for comparison. The digital and optical reconstruction results are in good agreement.

© 2012 OSA

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.4190) Imaging systems : Multiple imaging
(110.6880) Imaging systems : Three-dimensional image acquisition

ToC Category:
Imaging Systems

Original Manuscript: June 29, 2012
Revised Manuscript: September 24, 2012
Manuscript Accepted: September 24, 2012
Published: October 8, 2012

Ali Özgür Yöntem and Levent Onural, "Integral imaging based 3D display of holographic data," Opt. Express 20, 24175-24195 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Lippmann, “La photographie intégrale,” C.R. Hebd. Seances Acad. Sci.146, 446–451 (1908).
  2. F. Okano, H. Hoshino, H. A. Jun, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on the integral photography,” Appl. Opt.36, 1–14 (1997). [CrossRef]
  3. S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a ray-traced model of capturing optics,” J. Electron Imaging15, 0430071–0430078 (2006). [CrossRef]
  4. S.-W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computer-generated integral imaging system,” Jpn. J. Appl. Phys.45, L744–L747 (2006). [CrossRef]
  5. S.-H. Lee, S.-C. Kim, and E.-S. Kim, “Reconstruction of digital hologram generated by sub-image of integral imaging,” Proc. of SPIE6912, 69121F1–69121F10 (2008).
  6. S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Three-dimensional display system based on computer-generated integral photgraphy,” Proc. of SPIE4297, 187–195 (2001). [CrossRef]
  7. J.-K. Lee, S.-C. Kim, and E.-S. Kim, “Reconstruction of three-dimensional object and system analysis using ray tracing in practical integral imaging system,” Proc. of SPIE6695, 6695191–66951912 (2007).
  8. B.-N.-R. Lee, Y. Cho, K.. S. Park, S.-W. Min, J.-S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc.4161, 135–140 (2006). [CrossRef]
  9. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. and Tech.13, R85–R110 (2002). [CrossRef]
  10. L. Onural, “Sampling of the diffraction field,” Appl. Opt.39, 5929–5935 (2000). [CrossRef]
  11. A. Ö. Yöntem and Levent Onural, “Integral imaging using phase-only LCoS spatial light modulators as Fresnel lenslet arrays,” J. Opt. Soc. Am. A28, 2359–2375 (2011). [CrossRef]
  12. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley and Sons, Inc., 1991). [CrossRef]
  13. J. W. Goodman, Introduction to Fourier Optics (Mc-Graw-Hill, 1996).
  14. T. Mishina, M. Okui, and F. Okano, “Generation of holograms using integral photography,” Proc. of SPIE5599, 114–122 (2004). [CrossRef]
  15. R. V. Pole, “3-D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett.10, 20–22 (1967). [CrossRef]
  16. B. Javidi and S.-H. Hong, “Three-dimensional holographic image sensing and integral imaging display,” J. Disp. Technol1, 341–346 (2005). [CrossRef]
  17. C. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng.461158011–1158016 (2007). [CrossRef]
  18. J. G.-Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik116, 44–48 (2005). [CrossRef]
  19. T. Baumbach, E. Kolenović, V. Kebbel, and W. Jüptner, “Improvement of accuracy in digital holography by use of multiple holograms,” Appl. Opt.45, 6077–6085 (2006). [CrossRef] [PubMed]
  20. T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express12, 4320–4325 (2004). [CrossRef] [PubMed]
  21. F. Yaraş and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. of SPIE7237, 72370O1–72370O5 (2010).
  22. I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. of SPIE7376, 7376131–7376138 (2010).
  23. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun.164, 233–245 (1999). [CrossRef]
  24. H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng.46, 0958021–09580211 (2007). [CrossRef]
  25. T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPU-based wave optics library,” J. Opt. A-Pure and Appl. Opt.10, 0753081–0753085 (2009).
  26. J.-S. Jang and B. Javidi, “Three-dimensional integral imaging with electronically synthesized lenslet arrays,” Opt. Lett.27, 1767–1769 (2002). [CrossRef]
  27. M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and T. Reyhan, “Holographic 3DTV displays using spatial light modulators,” in Three-Dimensional Television-Capture, Transmission, Display, H. Ozaktas and L. Onural, eds. (Springer, 2008), pp. 529–555.
  28. L. Onural, F. Yaraş, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. of IEEE99, 576–589 (2011). [CrossRef]
  29. F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express19, 9147–9156 (2011). [CrossRef]
  30. S.-W. Min, S. Jung, H. Choi, Y. Kim, J.-H. Park, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt.44, 546–552 (2005). [CrossRef] [PubMed]
  31. D.-H. Shin, B.-G. Lee, J. Hyun, D.-C. Hwang, and E.-S. Kim, “Curved projection integral imaging using an additional large-aperture convex lens for viewing angle improvement,” ETRI J.31, 105–110 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited