OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24226–24236

Light localization, photon sorting, and enhanced absorption in subwavelength cavity arrays

Eli Lansey, Ian R. Hooper, Jonah N. Gollub, Alastair P. Hibbins, and David T. Crouse  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24226-24236 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1220 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A periodically patterned metal-dielectric composite material is designed, fabricated and characterized that spatially splits incoming microwave radiation into two spectral ranges, individually channeling the separate spectral bands to different cavities within each spatially repeating unit cell. Further, the target spectral bands are absorbed within each associated set of cavities. The photon sorting mechanism, the design methodology, and experimental methods used are all described in detail. A spectral splitting efficiency of 93–96% and absorption of 91–92% at the two spectral bands is obtained for the structure. This corresponds to an absorption enhancement over 600% as compared to the absorption in the same thickness of absorbing material. Methods to apply these concepts to other spectral bands are also described.

© 2012 OSA

OCIS Codes
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(160.1245) Materials : Artificially engineered materials

ToC Category:
Photonic Crystals

Original Manuscript: June 15, 2012
Revised Manuscript: September 23, 2012
Manuscript Accepted: September 24, 2012
Published: October 8, 2012

Eli Lansey, Ian R. Hooper, Jonah N. Gollub, Alastair P. Hibbins, and David T. Crouse, "Light localization, photon sorting, and enhanced absorption in subwavelength cavity arrays," Opt. Express 20, 24226-24236 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  3. M. Lester and D. C. Skigin, “An optical nanoantenna made of plasmonic chain resonators,” J. Opt. 13, 035105 (2011). [CrossRef]
  4. T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97, 261113 (2010). [CrossRef]
  5. R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001). [CrossRef]
  6. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef] [PubMed]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef] [PubMed]
  8. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009). [CrossRef] [PubMed]
  9. D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and opto-electronic device applications,” IEEE Trans. Electron Devices 52, 2365–2373 (2005). [CrossRef]
  10. D. Crouse, A. P. Hibbins, and M. J. Lockyear, “Tuning the polarization state of enhanced transmission in gratings,” Appl. Phys. Lett. 92, 191105 (2008). [CrossRef]
  11. D. Crouse, E. Jaquay, A. Maikal, and A. P. Hibbins, “Light circulation and weaving in periodically patterned structures,” Phys. Rev. B 77, 195437 (2008).
  12. D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express 15, 1415–1427 (2007). [CrossRef] [PubMed]
  13. D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors,” J. Opt. A: Pure Appl. Opt. 8, 175–181 (2006). [CrossRef]
  14. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008). [CrossRef] [PubMed]
  15. W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72, 193101 (2005).
  16. A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92, 143904 (2004). [CrossRef] [PubMed]
  17. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007). [CrossRef] [PubMed]
  18. A. Reza, M. M. Dignam, and S. Hughes, “Can light be stopped in realistic metamaterials?” Nature 455, E10–E11 (2008). [CrossRef]
  19. J. Huang, T.-K. Wu, and S.-W. Lee, “Tri-band frequency selective surface with circular ring elements,” IEEE Trans. Antennas Propag. 42, 166–175 (1994). [CrossRef]
  20. T.-K. Wu, “Four-band frequency selective surface with double-square-loop patch elements,” IEEE Trans. Antennas Propag. 42, 1659–1663 (1994). [CrossRef]
  21. M. Ohira, H. Deguchi, M. Tsuji, and H. Shigesawa, “Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique,” IEEE Trans. Antennas Propag. 52, 2925–2931 (2004). [CrossRef]
  22. T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson, and M. Kall, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011). [CrossRef] [PubMed]
  23. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008). [CrossRef]
  24. J. D. Edmunds, E. Hendry, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, “Multi-modal transmission of microwaves through hole arrays,” Opt. Express 19, 13793–13805 (2011). [CrossRef] [PubMed]
  25. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009). [CrossRef] [PubMed]
  26. J. Le Perchec, Y. Desieres, N. Rochat, and R. E. de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100, 113305 (2012). [CrossRef]
  27. J. Koch, A. A. Houck, K. L. Hur, and S. M. Girvin, “Time-reversal-symmetry breaking in circuit-qed-based photon lattices,” Phys. Rev. A 82, 043811 (2010). [CrossRef]
  28. J. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley & Sons, Inc., 1975).
  29. G. Airy, “On the diffraction of an object-glass with circular aperture,” Trans. Cambridge Philos. Soc. 5, 283–291 (1835).
  30. E. Lansey, I. M. Mandel, J. N. Gollub, and D. T. Crouse, “An effective cavity resonance model for enhanced optical transmission through arrays of subwavelength apertures in metal films,” Submitted (2012).
  31. S. Herminghaus, M. Klopfleisch, and H. J. Schmidt, “Attenuated total reflectance as a quantum interference phenomenon,” Opt. Lett. 19, 293–295 (1994). [CrossRef] [PubMed]
  32. A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970). [CrossRef]
  33. W. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,”Proc. IEEE 62, 33–36 (1974). [CrossRef]
  34. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemil, T. Thiol, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited