OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24247–24262

Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns

Xiang Zhou, Adrian Gh. Podoleanu, Zhuangqun Yang, Tao Yang, and Hong Zhao  »View Author Affiliations


Optics Express, Vol. 20, Issue 22, pp. 24247-24262 (2012)
http://dx.doi.org/10.1364/OE.20.024247


View Full Text Article

Enhanced HTML    Acrobat PDF (5618 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A modified bi-dimensional empirical mode decomposition (BEMD) method is proposed for sparsely decomposing a fringe pattern into two components, namely, a single intrinsic mode function (IMF) and a residue. The main idea of this method is a modified sifting process which employs morphological operations to detect ridges and troughs of the fringes, and uses weighted moving average algorithm to estimate envelopes of the IMF, replacing respective local extrema detection and envelope interpolation of conventional BEMDs. The background intensity of the fringe pattern is automatically removed by extracting the single IMF, thereby relieving the mode mixing problem of the BEMDs. A fast algorithm based on 2D convolution is also presented for reducing the calculation time to several seconds only. This approach is applied to process simulated and real fringe patterns, and the results obtained are compared with Fourier transform, discrete wavelet transform, and other EMD methods. The MATLAB code is downloadable at http://gr.xjtu.edu.cn/web/zhouxiang.

© 2012 OSA

OCIS Codes
(100.2650) Image processing : Fringe analysis
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(110.2650) Imaging systems : Fringe analysis

ToC Category:
Image Processing

History
Original Manuscript: July 20, 2012
Revised Manuscript: August 27, 2012
Manuscript Accepted: September 9, 2012
Published: October 8, 2012

Citation
Xiang Zhou, Adrian Gh. Podoleanu, Zhuangqun Yang, Tao Yang, and Hong Zhao, "Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns," Opt. Express 20, 24247-24262 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-22-24247


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Servin, J. L. Marroquin, and F. J. Cuevas, “Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique,” Appl. Opt.36(19), 4540–4548 (1997). [CrossRef] [PubMed]
  2. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt.22(24), 3977–3982 (1983). [CrossRef] [PubMed]
  3. J. A. Quiroga, J. Antonio Gómez-Pedrero, and Á. García-Botella, “Algorithm for fringe pattern normalization,” Opt. Commun.197(1-3), 43–51 (2001). [CrossRef]
  4. X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Lasers Eng.42(3), 245–261 (2004). [CrossRef]
  5. Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt.43(13), 2695–2702 (2004). [CrossRef] [PubMed]
  6. J. Zhong and J. Weng, “Dilating Gabor transform for the fringe analysis of 3-D shape measurement,” Opt. Eng.43(4), 895 (2004). [CrossRef]
  7. J. G. Zhong and J. W. Weng, “Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry,” Appl. Opt.43(26), 4993–4998 (2004). [CrossRef] [PubMed]
  8. L. R. Watkins, S. M. Tan, and T. H. Barnes, “Determination of interferometer phase distributions by use of wavelets,” Opt. Lett.24(13), 905–907 (1999). [CrossRef] [PubMed]
  9. J. G. Zhong and J. W. Weng, “Phase retrieval of optical fringe patterns from the ridge of a wavelet transform,” Opt. Lett.30(19), 2560–2562 (2005). [CrossRef] [PubMed]
  10. M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Eliminating the zero spectrum in Fourier transform profilometry using a two-dimensional continuous wavelet transform,” Opt. Commun.266(2), 482–489 (2006). [CrossRef]
  11. A. Federico and G. H. Kaufmann, “Phase retrieval in digital speckle pattern interferometry by use of a smoothed space-frequency distribution,” Appl. Opt.42(35), 7066–7071 (2003). [CrossRef] [PubMed]
  12. S. Ozder, O. Kocahan, E. Coşkun, and H. Göktaş, “Optical phase distribution evaluation by using an S-transform,” Opt. Lett.32(6), 591–593 (2007). [CrossRef] [PubMed]
  13. J. G. Zhong and J. W. Weng, “Generalized Fourier analysis for phase retrieval of fringe pattern,” Opt. Express18(26), 26806–26820 (2010). [CrossRef] [PubMed]
  14. Q. Kemao, “On window size selection in the windowed Fourier ridges algorithm,” Opt. Lasers Eng.45(12), 1186–1192 (2007). [CrossRef]
  15. N. E. Huang, Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci.454(1971), 903–995 (1998). [CrossRef]
  16. M. B. Bernini, G. E. Galizzi, A. Federico, and G. H. Kaufmann, “Evaluation of the 1D empirical mode decomposition method to smooth digital speckle pattern interferometry fringes,” Opt. Lasers Eng.45(6), 723–729 (2007). [CrossRef]
  17. S. Li, X. Su, W. Chen, and L. Xiang, “Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition,” J. Opt. Soc. Am. A26(5), 1195–1201 (2009). [CrossRef] [PubMed]
  18. M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt.47(14), 2592–2598 (2008). [CrossRef] [PubMed]
  19. M. Wielgus and K. Patorski, “Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations,” Appl. Opt.50(28), 5513–5523 (2011). [CrossRef] [PubMed]
  20. X. Zhou, H. Zhao, and T. Jiang, “Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithm,” Opt. Lett.34(13), 2033–2035 (2009). [CrossRef] [PubMed]
  21. S. M. A. Bhuiyan, N. Attoh-Okine, K. E. Barner, A. Y. Ayenu-Prah, and R. R. Adhami, “Bidimensional empirical mode decomposition using various interpolation techniques,” Adv. Adapt. Data Anal01(02), 309–338 (2009). [CrossRef]
  22. X. Zhou, T. Yang, H. Zou, and H. Zhao, “Multivariate empirical mode decomposition approach for adaptive denoising of fringe patterns,” Opt. Lett.37(11), 1904–1906 (2012). [CrossRef] [PubMed]
  23. M. B. Bernini, A. Federico, and G. H. Kaufmann, “Phase measurement in temporal speckle pattern interferometry signals presenting low-modulated regions by means of the bidimensional empirical mode decomposition,” Appl. Opt.50(5), 641–647 (2011). [CrossRef] [PubMed]
  24. Y. Zhou and H. G. Li, “Adaptive noise reduction method for DSPI fringes based on bi-dimensional ensemble empirical mode decomposition,” Opt. Express19(19), 18207–18215 (2011). [CrossRef] [PubMed]
  25. J. Nunes, S. Guyot, and E. Delechelle, “Texture analysis based on local analysis of the bidimensional empirical mode decomposition,” Mach. Vis. Appl.16, 177–188 (2005). [CrossRef]
  26. J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput.21(12), 1019–1026 (2003). [CrossRef]
  27. C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE. Signal Proc. Lett.12(10), 701–704 (2005). [CrossRef]
  28. A. Linderhed, “Variable sampling of the empirical mode decomposition of two-dimensional signals,” Int. J. Wavelets Multiresolution Inf. Process.03(03), 435–452 (2005). [CrossRef]
  29. T. Yang, Finite element structural analysis (Prentice-Hall, 1986).
  30. Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Proc. Lett.9(3), 81–84 (2002). [CrossRef]
  31. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process.16(8), 2080–2095 (2007). [CrossRef] [PubMed]
  32. X. Guanlei, W. Xiaotong, and X. Xiaogang, “Improved bi-dimensional EMD and Hilbert spectrum for the analysis of textures,” Pattern Recognit.42(5), 718–734 (2009). [CrossRef]
  33. Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng.45(2), 304–317 (2007). [CrossRef]
  34. H. A. Aebischer and S. Waldner, “A simple and effective method for filtering speckle-interferometric phase fringe patterns,” Opt. Commun.162(4-6), 205–210 (1999). [CrossRef]
  35. J. F. Lin and X. Y. Su, “Two-dimensional Fourier transform profilometry for the automatic measurement of three-dimensional object shapes,” Opt. Eng.34(11), 3297–3302 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited