OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24272–24279

Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency

Arkadiy Lyakh, Richard Maulini, Alexei Tsekoun, Rowel Go, and C. Kumar N. Patel  »View Author Affiliations


Optics Express, Vol. 20, Issue 22, pp. 24272-24279 (2012)
http://dx.doi.org/10.1364/OE.20.024272


View Full Text Article

Enhanced HTML    Acrobat PDF (957 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A strain-balanced, AlInAs/InGaAs/InP quantum cascade laser structure, designed for light emission near 9µm, was grown by molecular beam epitaxy. Laser devices were processed in buried heterostructure geometry. Maximum pulsed and continuous wave room temperature optical power of 4.5 and 2W and wallplug efficiency of 16% and 10%, respectively, were demonstrated for a 3mm by 10µm laser mounted epi-side down on an AlN/SiC composite submount. Pulsed laser characteristics were shown to be self-consistently described by a simple model based on rate equations using measured 70% injection efficiency for the upper laser level.

© 2012 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 31, 2012
Revised Manuscript: September 28, 2012
Manuscript Accepted: October 4, 2012
Published: October 9, 2012

Citation
Arkadiy Lyakh, Richard Maulini, Alexei Tsekoun, Rowel Go, and C. Kumar N. Patel, "Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency," Opt. Express 20, 24272-24279 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-22-24272


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012). [CrossRef] [PubMed]
  2. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011). [CrossRef]
  3. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-µm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107, 18801 (2010).
  4. N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, and M. Razeghi, “Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ~3.76 µm,” Appl. Phys. Lett.97(13), 131117 (2010). [CrossRef]
  5. D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett.97(7), 071101 (2010). [CrossRef]
  6. M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-waveinfrared (λ>6 µm),” Opt. Eng.49(11), 111106 (2010). [CrossRef]
  7. M. Razeghi, “High-perfomance InP-based Mid-IR quantum cascade lasers,” IEEE J. Sel. Top. Quantum Electron.15(3), 941–951 (2009). [CrossRef]
  8. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009). [CrossRef]
  9. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009). [CrossRef]
  10. Y. Bai, S. Slivken, S. R. Darvish, and M. Razeghi, “Very high wall plug efficiency of quantum cascade lasers,” Proc. of SPIE vol. 7608, 76080F (2010)
  11. R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express19(18), 17203–17211 (2011). [CrossRef] [PubMed]
  12. C. Sirtori, F. Capasso, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Resonant tunneling in quantum cascade lasers,” IEEE J. Quantum Electron.34(9), 1722–1729 (1998). [CrossRef]
  13. J. Faist, C. Sirtori, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power long-wavelength (λ~11.5 µm) quantum cascade lasers operating above room temperature,” IEEE Photon. Technol. Lett.10(8), 1100–1102 (1998). [CrossRef]
  14. R. Terazzi and J. Faist, “A density matrix model of transport and radiation in quantum cascade lasers,” New J. Phys.12(3), 033045 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited