OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24304–24319

Optical forces induced behavior of a particle in a non-diffracting vortex beam

Martin Šiler, Petr Jákl, Oto Brzobohatý, and Pavel Zemánek  »View Author Affiliations


Optics Express, Vol. 20, Issue 22, pp. 24304-24319 (2012)
http://dx.doi.org/10.1364/OE.20.024304


View Full Text Article

Enhanced HTML    Acrobat PDF (2612 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An interaction between a light field with complex field spatial distribution and a micro-particle leads to forces that drag the particle in space and may confine it in a stable position or a trajectory. The particle behavior is determined by its size with respect to the characteristic length of the spatially periodic or symmetric light field distribution. We study theoretically and experimentally the behavior of a microparticle near the center of an optical vortex beam in a plane perpendicular to the beam propagation. We show that such particle may be stably trapped either in a dark spot on the vortex beam axis, or in one of two points placed off the optical axis. It may also circulate along a trajectory having its radius smaller or equal to the radius of the first bright vortex ring.

© 2012 OSA

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: August 10, 2012
Revised Manuscript: September 30, 2012
Manuscript Accepted: October 1, 2012
Published: October 9, 2012

Citation
Martin Šiler, Petr Jákl, Oto Brzobohatý, and Pavel Zemánek, "Optical forces induced behavior of a particle in a non-diffracting vortex beam," Opt. Express 20, 24304-24319 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-22-24304


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11, 288–290 (1986). [CrossRef] [PubMed]
  2. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207, 169–175 (2002). [CrossRef]
  3. D. Grier and Y. Roichman, “Holographic optical trapping,” Appl. Opt.45, 880–887 (2006). [CrossRef] [PubMed]
  4. D. V. Petrov, “Raman spectroscopy of optically trapped particles,” J. Opt. A: Pure Appl. Opt.9, S139–S156 (2007). [CrossRef]
  5. M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, “Microfluidic sorting of mammalian cells by optical force switching,” Nature Biotechnol.23, 83–87 (2005). [CrossRef]
  6. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J.88, 3689–3698 (2005). [CrossRef] [PubMed]
  7. W. J. Greenleaf, M. T. Woodside, and S. M. Block, “High-resolution, single-molecule measurements of biomolecular motion,” Annu. Rev. Biophys. Biomol. Struct.36, 171–190 (2007). [CrossRef] [PubMed]
  8. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annual Review of Biochemistry77, 205–228 (2008). [CrossRef] [PubMed]
  9. P. Zemánek, A. Jonáš, and M. Liška, “Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave,” J. Opt. Soc. Am. A19, 1025–1034 (2002). [CrossRef]
  10. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426, 421–424 (2003). [CrossRef] [PubMed]
  11. T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B74, 035105 (2006). [CrossRef]
  12. I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett.88, 121116 (2006). [CrossRef]
  13. P. Jákl, T. Čižmár, M. Šerý, and P. Zemánek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett.92, 161110 (2008). [CrossRef]
  14. K. Dholakia, M. P. MacDonald, P. Zemánek, and T. Čižmár, “Cellular and colloidal separation using optical forces,” Methods Cell Biology82, 467–495 (2007). [CrossRef]
  15. L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992). [CrossRef] [PubMed]
  16. R. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev.50, 115–125 (1936). [CrossRef]
  17. E. Santamato, B. Daino, M. Romagnoli, M. Settembre, and Y. Shen, “Collective rotation of molecules driven by the angular-momentum of light in a nematic film,” Phys. Rev. Lett.57, 2423–2426 (1986). [CrossRef] [PubMed]
  18. M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature394, 348–350 (1998). [CrossRef]
  19. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics5, 343–348 (2011). [CrossRef]
  20. M. Babiker, W. Power, and L. Allen, “Light-induced torque on moving atoms,” Phys. Rev. Lett.73, 1239–1242 (1994). [CrossRef] [PubMed]
  21. W. Power, L. Allen, M. Babiker, and V. Lembessis, “Atomic motion in light beams possessing orbital angular momentum,” Phys. Rev. A52, 479–488 (1995). [CrossRef] [PubMed]
  22. J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A63, 063602 (2001). [CrossRef]
  23. M. Babiker, C. Bennett, D. Adrews, and L. Romero, “Orbital angular momentum exchange in the interaction of twisted light with molecules,” Phys. Rev. Lett89, 143601 (2002). [CrossRef] [PubMed]
  24. D. S. Bradshaw and D. L. Andrews, “Interactions between spherical nanoparticles optically trapped in Laguerre-Gaussian modes,” Opt. Lett.30, 3039–3041 (2005). [CrossRef] [PubMed]
  25. A. O. Santillán, K. Volke-Sepúlveda, and A. Flores-Pérez, “Wave fields with a periodic orbital angular momentum gradient along a single axis: a chain of vortices,” New. J. Phys.11, 043004 (2009). [CrossRef]
  26. K. Volke-Sepúlveda and R. Jauregui, “All-optical 3D atomic loops generated with Bessel light fields,” J. Phys. B42, 085303 (2009). [CrossRef]
  27. I. Ricardez-Vargas and K. Volke-Sepúlveda, “Experimental generation and dynamical reconfiguration of different circular optical lattices for applications in atom trapping,” J. Opt. Soc. Am. B27, 948–955 (2010). [CrossRef]
  28. V. Garcés-Chávez, K. Volke-Sepúlveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A66, 063402 (2002). [CrossRef]
  29. K. Volke-Sepúlveda, S. Chávez-Cerda, V. Garcés-Chávez, and K. Dholakia, “Three-dimensional optical forces and transfer of orbital angular momentum from multiringed light beams to spherical microparticles,” J. Opt. Soc. Am. B21, 1749–1757 (2004). [CrossRef]
  30. A. Ohta and Y. Kawata, “Analyses of radiation force and torque on a spherical particle near a substrate illuminated by a focused Laguerre-Gaussian beam,” Opt. Commun.274, 269–273 (2007). [CrossRef]
  31. S. H. Simpson and S. Hanna, “Rotation of absorbing spheres in Laguerre-Gaussian beams,” J. Opt. Soc. Am.26, 173–183 (2009). [CrossRef]
  32. J. Ng, Z. Lin, and C. Chan, “Theory of optical trapping by an optical vortex beam,” Phys. Rev. Lett.104, 103601 (2010). [CrossRef] [PubMed]
  33. D. Zhang, X. Yuan, S. Tjin, and S. Krishnan, “Rigorous time domain simulation of momentum transfer between light and microscopic particles in optical trapping,” Opt. Express12, 2220–2230 (2004). [CrossRef] [PubMed]
  34. M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express16, 4991–4999 (2008). [CrossRef] [PubMed]
  35. Y. Zhao, G. Milne, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Quantitative force mapping of an optical vortex trap,” Appl. Phys. Lett.92, 161111 (2008). [CrossRef]
  36. H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase singularity,” Phys. Rev. Lett.75, 826–829 (1995). [CrossRef] [PubMed]
  37. M. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A54, 1593–1596 (1996). [CrossRef] [PubMed]
  38. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett.22, 52–54 (1997). [CrossRef] [PubMed]
  39. K. Volke-Sepúlveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B: Quantum Semiclass. Opt.4, S82–S89 (2002). [CrossRef]
  40. A. O’Neil, I. MacVicar, L. Allen, and M. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett.88, 053601 (2002). [CrossRef]
  41. D. G. Grier, “A revolution in optical manipulation,” Nature424, 810–816 (2003). [CrossRef] [PubMed]
  42. V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett.91, 093602 (2003). [CrossRef] [PubMed]
  43. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett.90, 133901 (2003). [CrossRef] [PubMed]
  44. K. Ladavac and D. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express12, 1144–1149 (2004). [CrossRef] [PubMed]
  45. S. Parkin, G. Knöner, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the total optical angular momentum transfer in optical tweezers,” Opt. Express14, 6963–6970 (2006). [CrossRef] [PubMed]
  46. S.-H. Lee and D. G. Grier, “Giant colloidal diffusivity on corrugated optical vortices,” Phys. Rev. Lett.96, 190601 (2006). [CrossRef] [PubMed]
  47. C. Schmitz, K. Uhring, J. Spatz, and J. Curtis, “Tuning the orbital angular momentum in optical vortex beams,” Opt. Express14, 6604–6612 (2006). [CrossRef] [PubMed]
  48. M. Reichert and H. Stark, “Circling particles and drafting in optical vortices,” J. Phys.: Condens. Matter16, S4085–S4094 (2004). [CrossRef]
  49. K. Ladavac and D. G. Grier, “Colloidal hydrodynamic coupling in concentric optical vortices,” Europhys. Lett.70, 548–554 (2005). [CrossRef]
  50. C.-S. Guo, Y.-N. Yu, and Z. Hong, “Optical sorting using an array of optical vortices with fractional topological charge,” Opt. Commun.283, 1889–1893 (2010). [CrossRef]
  51. V. R. Daria, M. A. Go, and H.-A. Bachor, “Simultaneous transfer of linear and orbital angular momentum to multiple low-index particles,” J. Opt.13, 044004, (2011). [CrossRef]
  52. T. Čižmár, D. I. C. Dalgarno, P. C. Ashok, F. J. Gunn-Moore, and K. Dholakia, “Interference-free superposition of nonzero order light modes: Functionalized optical landscapes,” Appl. Phys. Lett.98, 081114 (2011). [CrossRef]
  53. K. Volke-Sepúlveda, A. O. Sántillan, and R. R. Boullosa, “Transfer of angular momentum to matter from acoustical vortices in free space,” Phys. Rev. Lett.100, 024302 (2008). [CrossRef] [PubMed]
  54. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun.177, 297–301 (2000). [CrossRef]
  55. V. Jarutis, R. Paškauskas, and A. Stabinis, “Focusing of Laguerre-Gaussian beams by axicon,” Opt. Commun.184, 105–112 (2000). [CrossRef]
  56. M. Lei and B. L. Yao, “Characteristics of beam profile of Gaussian beam passing through an axicon,” Opt. Commun.239, 367–372 (2004). [CrossRef]
  57. O. Brzobohatý, T. Čižmár, and P. Zemánek, “High quality quasi-Bessel beam generated by round-tip axicon,” Opt. Express16, 12688–12700 (2008). [CrossRef] [PubMed]
  58. T. Čižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonic workstation,” Opt. Express16, 14024–14035 (2008). [CrossRef] [PubMed]
  59. T. Čižmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express17, 15558–15570 (2009). [CrossRef] [PubMed]
  60. M. Šiler and P. Zemánek, “Optical forces in a non-diffracting vortex beam,” Quant J.. Spectr. & Rad. Transferaccepted for publication (2012) DOI:. [CrossRef]
  61. J. J. Stamnes, Waves in Focal Regions (IOP Publishing limited, Bristol, 1986).
  62. T. Čižmár, M. Šiler, and P. Zemánek, “An optical nanotrap array movable over a milimetre range,” Appl. Phys. B84, 197–203 (2006). [CrossRef]
  63. T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, “Sub-micron particle organization by self-imaging of non-diffracting beams,” New. J. Phys.8, 43 (2006). [CrossRef]
  64. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66, 4594–4602 (1989). [CrossRef]
  65. B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz-Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,” J. Opt.19, 59–67 (1988). [CrossRef]
  66. G. Gouesbet, J. Lock, and G. Gréhan, “Generalized Lorenz-Mie theories and description of electromagnetic arbitrary shaped beams:localized approximations and localized beam models, a review,” J. Quant. Spectr. & Rad. Transfer112, 1–27 (2011). [CrossRef]
  67. G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, 2011). [CrossRef]
  68. G. Milne, K. Dholakia, D. McGloin, K. Volke-Sepúlveda, and P. Zemánek, “Transverse particle dynamics in a Bessel beam,” Opt. Express15, 13972–13987 (2007). [CrossRef] [PubMed]
  69. J. M. Taylor and G. D. Love, “Multipole expansion of Bessel and Gaussian beams for Mie scattering calculations,” J. Opt. Soc. Am. A26, 278–282 (2009). [CrossRef]
  70. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4, 388–394 (2010). [CrossRef]
  71. R. J. Beck, J. P. Parry, W. N. MacPherson, A. Waddie, N. J. Weston, J. D. Shephard, and D. P. Hand, “Application of cooled spatial light modulator for high power nanosecond laser micromachining,” Opt. Express18, 17059–17065 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited