OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24320–24329

Handheld deep ultraviolet emission device based on aluminum nitride quantum wells and graphene nanoneedle field emitters

Takahiro Matsumoto, Sho Iwayama, Takao Saito, Yasuyuki Kawakami, Fumio Kubo, and Hiroshi Amano  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24320-24329 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (6143 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the successful fabrication of a compact deep ultraviolet emission device via a marriage of AlGaN quantum wells and graphene nanoneedle field electron emitters. The device demonstrated a 20-mW deep ultraviolet output power and an approximately 4% power efficiency. The performance of this device may lead toward the realization of an environmentally friendly, convenient and practical deep ultraviolet light source.

© 2012 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(260.7190) Physical optics : Ultraviolet

ToC Category:
Optical Devices

Original Manuscript: July 19, 2012
Revised Manuscript: September 19, 2012
Manuscript Accepted: September 21, 2012
Published: October 9, 2012

Virtual Issues
November 13, 2012 Spotlight on Optics

Takahiro Matsumoto, Sho Iwayama, Takao Saito, Yasuyuki Kawakami, Fumio Kubo, and Hiroshi Amano, "Handheld deep ultraviolet emission device based on aluminum nitride quantum wells and graphene nanoneedle field emitters," Opt. Express 20, 24320-24329 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Watanabe, C. E. Nebel, and S. Shikata, “Isotopic homojunction band engineering from diamond,” Science324(5933), 1425–1428 (2009). [CrossRef] [PubMed]
  2. K. Watanabe, T. Taniguchi, and H. Kanda, “Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal,” Nat. Mater.3(6), 404–409 (2004). [CrossRef] [PubMed]
  3. Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, “Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure,” Science317(5840), 932–934 (2007). [CrossRef] [PubMed]
  4. K. Watanabe, T. Taniguchi, T. Niiyama, K. Miya, and M. Taniguchi, “Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride,” Nat. Photonics3(10), 591–594 (2009). [CrossRef]
  5. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett.48(5), 353–355 (1986). [CrossRef]
  6. Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature441(7091), 325–328 (2006). [CrossRef] [PubMed]
  7. A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics2(2), 77–84 (2008). [CrossRef]
  8. H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, and N. Kamata, “231-261 nm AlGaN deep-ultraviolet light emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire,” Appl. Phys. Lett.91(7), 071901 (2007). [CrossRef]
  9. H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, “222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire,” Phys. Status Solidi A206(6), 1176–1182 (2009). [CrossRef]
  10. H. Hirayama, Y. Tsukada, T. Maeda, and N. Kamata, “Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multi quantum-barrier electron blocking layer,” Appl. Phys. Express3(3), 031002 (2010). [CrossRef]
  11. C. Pernot, M. Kim, S. Fukahori, T. Inazu, T. Fujita, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, and H. Amano, “Improved efficiency of 255-280 nm AlGaN-based light-emitting diodes,” Appl. Phys. Express3(6), 061004 (2010). [CrossRef]
  12. J. Zhang, X. Hu, A. Lunev, J. Deng, Y. Bilenko, T. M. Katona, M. S. Shur, R. Gaska, and A. Khan, “AlGaN deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys.44(10), 7250–7253 (2005). [CrossRef]
  13. A. Bhattacharyya, T. D. Moustakas, L. Zhou, D. J. Smith, and W. Hug, “Deep ultraviolet emitting AlGaN quantum wells with high internal quantum efficiency,” Appl. Phys. Lett.94(18), 181907 (2009). [CrossRef]
  14. T. Oto, R. G. Banal, K. Kataoka, M. Funato, and Y. Kawakami, “100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam,” Nat. Photonics4(11), 767–770 (2010). [CrossRef]
  15. Y. Shimahara, H. Miyake, K. Hiramatsu, F. Fukuyo, T. Okada, H. Takaoka, and H. Yoshida, “Fabrication of deep-ultraviolet-light-source tube using Si-doped AlGaN,” Appl. Phys. Express4(4), 042103 (2011). [CrossRef]
  16. T. Matsumoto, Y. Neo, H. Mimura, M. Tomita, and N. Minami, “Stabilization of electron emission from nanoneedles with two dimensional graphene sheet structure in a high residual pressure region,” Appl. Phys. Lett.90(10), 103516 (2007). [CrossRef]
  17. T. Matsumoto, Y. Neo, H. Mimura, and M. Tomita, “Determining the physisorption energies of molecules on graphene nanostructures by measuring the stochastic emission-current fluctuation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.77(3), 031611 (2008). [CrossRef] [PubMed]
  18. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005). [CrossRef] [PubMed]
  19. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature438(7065), 201–204 (2005). [CrossRef] [PubMed]
  20. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007). [CrossRef] [PubMed]
  21. T. Matsumoto, T. Nakamura, Y. Neo, H. Mimura, and M. Tomita, Graphene Simulation (InTech, Croatia, 2011), Chap. 8.
  22. T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbeli, S. Christiansen, M. Albrecht, and H. P. Strunk, “A-physics of condensed matter structure defects,” Philos. Mag.77, 1013–1025 (1998). [CrossRef]
  23. W. Shockley and T. Read, “Statistics of the recombination of holes and electrons,” Phys. Rev.87(5), 835–842 (1952). [CrossRef]
  24. D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42: a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning29(3), 92–101 (2007). [CrossRef] [PubMed]
  25. G. F. J. Garlick, Luminescence of Inorganic Solids (Academic Press, New York, 1966), Chap. 12.
  26. J. Li, B. Nam, M. L. Nakarmi, J. Y. Lin, H. X. Jiang, P. Carrier, and S.-H. Wei, “Band structure and fundamental optical transitions in wurtzite AlN,” Appl. Phys. Lett.83(25), 5163–5165 (2003). [CrossRef]
  27. H. Angerer, D. Brunner, F. Freudenberg, O. Ambacher, M. Stutzmann, R. Höpler, T. Metzger, E. Born, G. Dollinger, A. Bergmaier, S. Karsch, and H.-J. Körner, “Determination of the Al mole fraction and the band gap bowing of epitaxial AlxGa1-xN films,” Appl. Phys. Lett.71(11), 1504–1506 (1997). [CrossRef]
  28. D. Brunner, H. Angerer, E. Bustarret, F. Freudenberg, R. Höpler, R. Dimitrov, O. Ambacher, and M. Stutzmann, “Optical constants of epitaxial AlGaN films and their temperature dependence,” J. Appl. Phys.82(10), 5090–5096 (1997). [CrossRef]
  29. H. A. Bethe, “On the theory of the passage of fast particles through matter,” Ann. Phys.5, 325–400 (1930). [CrossRef]
  30. S. G. Tomlin, “The back scattering of electrons from solids,” Proc. Phys. Soc. Lond.82(3), 465–466 (1963). [CrossRef]
  31. T. Hase, T. Kano, E. Nakazawa, and H. Yamamoto, Advances in Electronics and Electron Physics (Academic Press, New York, 1990), pp. 271–373.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited