OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24394–24410

Slot-mode-coupled optomechanical crystals

Marcelo Davanço, Jasper Chan, Amir H. Safavi-Naeini, Oskar Painter, and Kartik Srinivasan  »View Author Affiliations


Optics Express, Vol. 20, Issue 22, pp. 24394-24410 (2012)
http://dx.doi.org/10.1364/OE.20.024394


View Full Text Article

Enhanced HTML    Acrobat PDF (8870 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a design methodology and analysis of a cavity optomechanical system in which a localized GHz frequency mechanical mode of a nanobeam resonator is evanescently coupled to a high quality factor (Q > 106) optical mode of a separate nanobeam optical cavity. Using separate nanobeams provides flexibility, enabling the independent design and optimization of the optics and mechanics of the system. In addition, the small gap (≈25 nm) between the two resonators gives rise to a slot mode effect that enables a large zero-point optomechanical coupling strength to be achieved, with g/2π > 300 kHz in a Si3N4 system at 980 nm and g/2π ≈ 900 kHz in a Si system at 1550 nm. The fact that large coupling strengths to GHz mechanical oscillators can be achieved in Si3N4 is important, as this material has a broad optical transparency window, which allows operation throughout the visible and near-infrared. As an application of this platform, we consider wide-band optical frequency conversion between 1300 nm and 980 nm, using two optical nanobeam cavities coupled on either side to the breathing mode of a mechanical nanobeam resonator.

© 2012 OSA

OCIS Codes
(230.1040) Optical devices : Acousto-optical devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: July 20, 2012
Revised Manuscript: September 19, 2012
Manuscript Accepted: September 25, 2012
Published: October 10, 2012

Citation
Marcelo Davanço, Jasper Chan, Amir H. Safavi-Naeini, Oskar Painter, and Kartik Srinivasan, "Slot-mode-coupled optomechanical crystals," Opt. Express 20, 24394-24410 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-22-24394


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express15, 17172–17205 (2007). [CrossRef] [PubMed]
  2. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science330, 1520–1523 (2010). [CrossRef] [PubMed]
  3. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London)472, 69–73 (2011). [CrossRef]
  4. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London)475, 359–363 (2011). [CrossRef]
  5. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature (London)478, 89–92 (2011). [CrossRef]
  6. A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical traveling wave phonon-photon translator,” New J. Phys.13, 013017 (2011). [CrossRef]
  7. L. Tian and H. Wang, “Optical wavelength conversion of quantum states with optomechanics,” Phys. Rev. A82, 053806 (2010). [CrossRef]
  8. D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, “Slowing and stopping light using an optomechanical crystal array,” New J. Phys.13, 023003 (2011). [CrossRef]
  9. K. Stannigel, P. Rabl, A. S. Sørensen, M. D. Lukin, and P. Zoller, “Optomechanical transducers for quantum-information processing,” Phys. Rev. A84, 042341 (2011). [CrossRef]
  10. M. Ludwig, A. H. Safavi-Naeini, O. Painter, and F. Marquadt, “Optomechanical photon detection and enhanced dispersive phonon readout,” arXiv:1202.0532 (2012).
  11. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature462, 78–82 (2009). [CrossRef] [PubMed]
  12. J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity-optomechanics,” arXiv:1203.5730 (2012).
  13. C. F.-V. K. M. C. Dong and L. W.-H. Tian, “A microchip optomechanical accelerometer,” arXiv:1205.2360 (2012).
  14. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29, 1209–1211 (2004). [CrossRef] [PubMed]
  15. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009). [CrossRef] [PubMed]
  16. Y.-G. Roh, T. Tanabe, A. Shinya, H. Taniyama, E. Kuramochi, S. Matsuo, T. Sato, and M. Notomi, “Strong optomechanical interaction in a bilayer photonic crystal,” Phys. Rev. B81, 121101 (2010). [CrossRef]
  17. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett.103, 103601 (2009). [CrossRef] [PubMed]
  18. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature462, 633–636 (2009). [CrossRef] [PubMed]
  19. A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett.97, 181106 (2010).
  20. J. Zheng, Y. Li, S. Aras, M. Stein, K. L. Shepard, and C. W. Wong, “Parametric optomechanical oscillations in two-dimensional slot-type high-Q photonic crystal cavities,” Appl. Phys. Lett.100, 211908 (2012). [CrossRef]
  21. P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q SiNx microdisks with magnetostatic atom chips,” Appl. Phys. Lett.89, 131108 (2006). [CrossRef]
  22. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17, 11366–11370 (2009). [CrossRef] [PubMed]
  23. E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the vsible wavelength range,” Opt. Express17, 14543–14551 (2009). [CrossRef]
  24. B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92, 103125 (2008). [CrossRef]
  25. S. S. Verbridge, H. G. Craighead, and J. M. Parpia, “A megahertz nanomechanical resonator with room temperature quality factor over a million,” Appl. Phys. Lett.92, 013112 (2008). [CrossRef]
  26. K. Y. Fong, W. H. P. Pernice, M. Li, and H. X. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett.97, 073112 (2010). [CrossRef]
  27. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A microchip optomechanical accelerometer,” arXiv:1203.5730 (2012).
  28. P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microcavities excited via an integrated waveguide and fiber taper,” Opt. Express13, 801–820 (2005). [CrossRef] [PubMed]
  29. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19, 18529–18542 (2011). [CrossRef] [PubMed]
  30. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys.Lett.96, 203102 (2010). [CrossRef]
  31. M. Eichenfield, J. Chan, A. H. Safavi-Naeini, K. J. Vahala, and O. Painter, “Modeling dispersive coupling and-losses of localized optical andmechanical modes in optomechanicalcrystals,” Opt. Express17, 20078–20098 (2009). [CrossRef] [PubMed]
  32. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E65, 066611 (2002). [CrossRef]
  33. J. Chan, A. H. Safavi-Naeini, J. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” (2012), arXiv:1206.2099.
  34. P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X2, 011008 (2012). [CrossRef]
  35. M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, and M. Lončar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett.36, 421–423 (2011). [CrossRef] [PubMed]
  36. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics1, 215–223 (2007). [CrossRef]
  37. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3, 696–705 (2009). [CrossRef]
  38. A. H. Safavi-Naeini and O. Painter, “Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab,” Opt. Express18, 14926–14943 (2010). [CrossRef] [PubMed]
  39. R. M. Camacho, J. Chan, M. Eichenfield, and O. Painter, “Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity,” Opt. Express17, 15726–15735 (2009). [CrossRef] [PubMed]
  40. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express10, 670–684 (2002). [PubMed]
  41. H. J. Kimble, “The quantum internet,” Nature (London)453, 1023–1030 (2008). [CrossRef]
  42. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics4, 786–791 (2010). [CrossRef]
  43. J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Goetzinger, and V. Sandoghdar, “A single-molecule optical transistor,” Nature460, 76–80 (2009). [CrossRef] [PubMed]
  44. C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a microwave cavity interferometer,” Nat. Phys.4, 555–560 (2008). [CrossRef]
  45. J. Sulkko, M. A. Sillanpää, P. Häkkinen, L. Lechner, M. Helle, A. Fefferman, J. Parpia, and P. J. Hakonen, “Strong gate coupling of high-Q nanomechanical resonators,” Nano Lett.10, 4884–4889 (2010). [CrossRef]
  46. F. Massel, T. T. Heikkilä, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanpää, “Microwave amplification with nanomechanical resonators,” Nature (London)480, 351–354 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited