OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24429–24443

Bessel-Gauss beam enhancement cavities for high-intensity applications

William P. Putnam, Damian N. Schimpf, Gilberto Abram, and Franz X. Kärtner  »View Author Affiliations


Optics Express, Vol. 20, Issue 22, pp. 24429-24443 (2012)
http://dx.doi.org/10.1364/OE.20.024429


View Full Text Article

Enhanced HTML    Acrobat PDF (1425 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce Bessel-Gauss beam enhancement cavities that may circumvent the major obstacles to more efficient cavity-enhanced high-field physics such as high-harmonic generation. The basic properties of Bessel-Gauss beams are reviewed and their transformation properties through simple optical systems (consisting of spherical and conical elements) are presented. A general Bessel-Gauss cavity design strategy is outlined, and a particular geometry, the confocal Bessel-Gauss cavity, is analyzed in detail. We numerically simulate the confocal Bessel-Gauss cavity and present an example cavity with 300 MHz repetition rate supporting an effective waist of 33 μm at the focus and an intensity ratio from the focus to the cavity mirror surfaces of 1.5 × 104.

© 2012 OSA

OCIS Codes
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers
(020.2649) Atomic and molecular physics : Strong field laser physics
(070.5753) Fourier optics and signal processing : Resonators

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 16, 2012
Manuscript Accepted: October 1, 2012
Published: October 11, 2012

Citation
William P. Putnam, Damian N. Schimpf, Gilberto Abram, and Franz X. Kärtner, "Bessel-Gauss beam enhancement cavities for high-intensity applications," Opt. Express 20, 24429-24443 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-22-24429


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett.94(19), 193201 (2005). [CrossRef] [PubMed]
  2. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature436(7048), 234–237 (2005). [CrossRef] [PubMed]
  3. J. Lee, D. R. Carlson, and R. J. Jones, “Optimizing intracavity high harmonic generation for XUV fs frequency combs,” Opt. Express19(23), 23315–23326 (2011). [CrossRef] [PubMed]
  4. A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature482(7383), 68–71 (2012). [CrossRef] [PubMed]
  5. D. C. Yost, T. R. Schibli, and J. Ye, “Efficient output coupling of intracavity high-harmonic generation,” Opt. Lett.33(10), 1099–1101 (2008). [CrossRef] [PubMed]
  6. S. Holzberger, I. Pupeza, D. Esser, J. Weitenberg, H. Carstens, T. Eidam, P. Russbüldt, J. Limpert, T. Udem, A. Tünnermann, T. Hänsch, F. Krausz, and E. Fill, “Sub-25 nm high-harmonic generation with a 78-MHz repetition rate enhancement cavity,” QELS 2012, Postdeadline Paper QTh5B.7.
  7. I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, T. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett.35(12), 2052–2054 (2010). [CrossRef] [PubMed]
  8. K. D. Moll, R. J. Jones, and J. Ye, “Output coupling methods for cavity-based high-harmonic generation,” Opt. Express14(18), 8189–8197 (2006). [CrossRef] [PubMed]
  9. areJ. Weitenberg, P. Rußbüldt, T. Eidam, and I. Pupeza, “Transverse mode tailoring in a quasi-imaging high-finesse femtosecond enhancement cavity,” Opt. Express19(10), 9551–9561 (2011). [CrossRef] [PubMed]
  10. F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun.64(6), 491–495 (1987). [CrossRef]
  11. V. Bagini, F. Frezza, M. Santarsiero, G. Schettini, and G. Schirripa Spagnolo, “Generalized Bessel-Gauss beams,” J. Mod. Opt.43, 1155–1166 (1996).
  12. C. J. R. Sheppard and T. Wilson, “Gaussian-beam theory of lenses with annular aperture,” IEE J Microwaves, Opt. Acoust.2(4), 105–112 (1978). [CrossRef]
  13. A. A. Al-Rashed and B. E. A. Saleh, “Decentered Gaussian beams,” Appl. Opt.34(30), 6819–6825 (1995). [CrossRef] [PubMed]
  14. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, 1999), Chap. 3.
  15. M. Santarsiero, “Propagation of generalized Bessel-Gauss beams through ABCD optical systems,” Opt. Commun.132(1-2), 1–7 (1996). [CrossRef]
  16. J. Rogel-Salazar, G. H. C. New, and S. Chávez-Cerda, “Bessel-Gauss beam optical resonator,” Opt. Commun.190(1-6), 117–122 (2001). [CrossRef]
  17. A. N. Khilo, E. G. Katranji, and A. A. Ryzhevich, “Axicon-based Bessel resonator: analytical description and experiment,” J. Opt. Soc. Am. A18(8), 1986–1992 (2001). [CrossRef] [PubMed]
  18. J. C. Gutiérrez-Vega, R. Rodríguez-Masegosa, and S. Chávez-Cerda, “Bessel-Gauss resonator with spherical output mirror: geometrical- and wave-optics analysis,” J. Opt. Soc. Am. A20(11), 2113–2122 (2003). [CrossRef] [PubMed]
  19. P. Pääkkönen and J. Turunen, “Resonators with Bessel-Gauss modes,” Opt. Commun.156(4-6), 359–366 (1998). [CrossRef]
  20. G. Abram, “High intensity femtosecond enhancement cavities,” M. Eng Thesis, MIT (2009).
  21. H. A. Haus, Waves and Fields in Optoelectronics (CBLS, 2004), Chap. 3.
  22. L. Yu, M. Huang, M. Chen, W. Chen, W. Huang, and Z. Zhu, “Quasi-discrete Hankel transform,” Opt. Lett.23(6), 409–411 (1998). [CrossRef] [PubMed]
  23. M. Guizar-Sicairos and J. C. Gutiérrez-Vega, “Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields,” J. Opt. Soc. Am. A21(1), 53–58 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited