OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24450–24464

Measuring the pressures across microfluidic droplets with an optical tweezer

Yuhang Jin, Antony Orth, Ethan Schonbrun, and Kenneth B. Crozier  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24450-24464 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1382 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a novel technique that enables pressure measurements to be made in microfluidic chips using optical trapping. Pressure differentials across droplets in a microfluidic channel are determined by monitoring the displacements of a bead in an optical trap. We provide physical interpretation of the results. Our experiments reveal that our device has high sensitivity and can be operated over a wide range of pressures from several Pascals to several thousand Pascals.

© 2012 OSA

OCIS Codes
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(120.5475) Instrumentation, measurement, and metrology : Pressure measurement

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: August 21, 2012
Revised Manuscript: September 21, 2012
Manuscript Accepted: September 22, 2012
Published: October 11, 2012

Yuhang Jin, Antony Orth, Ethan Schonbrun, and Kenneth B. Crozier, "Measuring the pressures across microfluidic droplets with an optical tweezer," Opt. Express 20, 24450-24464 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Squires and S. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Mod. Phys.77(3), 977–1026 (2005). [CrossRef]
  2. D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev.39(3), 1153–1182 (2010). [CrossRef] [PubMed]
  3. S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip8(2), 198–220 (2008). [CrossRef] [PubMed]
  4. A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. Demello, “Microdroplets: A sea of applications?” Lab Chip8(8), 1244–1254 (2008). [CrossRef] [PubMed]
  5. A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl.49(34), 5846–5868 (2010). [PubMed]
  6. R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys.75(1), 016601 (2012). [CrossRef] [PubMed]
  7. C. N. Baroud, F. Gallaire, and R. Dangla, “Dynamics of microfluidic droplets,” Lab Chip10(16), 2032–2045 (2010). [CrossRef] [PubMed]
  8. L. F. Cheow, L. Yobas, and D.-L. Kwong, “Digital microfluidics: Droplet based logic gates,” Appl. Phys. Lett.90(5), 054107 (2007). [CrossRef]
  9. M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science315(5813), 832–835 (2007). [CrossRef] [PubMed]
  10. J. Q. Boedicker, L. Li, T. R. Kline, and R. F. Ismagilov, “Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics,” Lab Chip8(8), 1265–1272 (2008). [CrossRef] [PubMed]
  11. P. Mary, L. Dauphinot, N. Bois, M.-C. Potier, V. Studer, and P. Tabeling, “Analysis of gene expression at the single-cell level using microdroplet-based microfluidic technology,” Biomicrofluidics5(2), 24109 (2011). [CrossRef] [PubMed]
  12. W. Y. Zhang, W. Zhang, Z. Liu, C. Li, Z. Zhu, and C. J. Yang, “Highly parallel single-molecule amplification approach based on agarose droplet polymerase chain reaction for efficient and cost-effective aptamer selection,” Anal. Chem.84(1), 350–355 (2012). [CrossRef] [PubMed]
  13. T. Hatakeyama, D. L. Chen, and R. F. Ismagilov, “Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS,” J. Am. Chem. Soc.128(8), 2518–2519 (2006). [CrossRef] [PubMed]
  14. C.-H. Chen, R. K. Shah, A. R. Abate, and D. A. Weitz, “Janus particles templated from double emulsion droplets generated using microfluidics,” Langmuir25(8), 4320–4323 (2009). [CrossRef] [PubMed]
  15. T. Rossow, J. A. Heyman, A. J. Ehrlicher, A. Langhoff, D. A. Weitz, R. Haag, and S. Seiffert, “controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics,” J. Am. Chem. Soc.134(10), 4983–4989 (2012). [CrossRef] [PubMed]
  16. D. J. Laser and J. G. Santiago, “A review of micropumps,” J. Micromech. Microeng.14(6), R35–R64 (2004). [CrossRef]
  17. P. Garstecki, M. A. Fischbach, and G. M. Whitesides, “Design for mixing using bubbles in branched microfluidic channels,” Appl. Phys. Lett.86(24), 244108 (2005). [CrossRef]
  18. P. Garstecki, M. J. Fuerstman, M. A. Fischbach, S. K. Sia, and G. M. Whitesides, “Mixing with bubbles: a practical technology for use with portable microfluidic devices,” Lab Chip6(2), 207–212 (2006). [CrossRef] [PubMed]
  19. S. Cobos, M. S. Carvalho, and V. Alvarado, “Flow of oil–water emulsions through a constricted capillary,” Int. J. Multiph. Flow35(6), 507–515 (2009). [CrossRef]
  20. L. Wang, M. Zhang, M. Yang, W. Zhu, J. Wu, X. Gong, and W. Wen, “Polydimethylsiloxane-integratable micropressure sensor for microfluidic chips,” Biomicrofluidics3(3), 34105 (2009). [CrossRef] [PubMed]
  21. M. J. Kohl, S. I. Abdel-Khalik, S. M. Jeter, and D. L. Sadowski, “A microfluidic experimental platform with internal pressure measurements,” Sens. Actuators A Phys.118(2), 212–221 (2005). [CrossRef]
  22. W. Song and D. Psaltis, “Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography,” Opt. Express18(16), 16561–16566 (2010). [CrossRef] [PubMed]
  23. W. Song and D. Psaltis, “Optofluidic pressure sensor based on interferometric imaging,” Opt. Lett.35(21), 3604–3606 (2010). [CrossRef] [PubMed]
  24. A. Orth, E. Schonbrun, and K. B. Crozier, “Multiplexed pressure sensing with elastomer membranes,” Lab Chip11(22), 3810–3815 (2011). [CrossRef] [PubMed]
  25. K. Chung, H. Lee, and H. Lu, “Multiplex pressure measurement in microsystems using volume displacement of particle suspensions,” Lab Chip9(23), 3345–3353 (2009). [CrossRef] [PubMed]
  26. N. Srivastava and M. A. Burns, “Microfluidic pressure sensing using trapped air compression,” Lab Chip7(5), 633–637 (2007). [CrossRef] [PubMed]
  27. B. J. Adzima and S. S. Velankar, “Pressure drops for droplet flows in microfluidic channels,” J. Micromech. Microeng. 16, 1504–1510 (2016).
  28. M. Abkarian, M. Faivre, and H. A. Stone, “High-speed microfluidic differential manometer for cellular-scale hydrodynamics,” Proc. Natl. Acad. Sci. U.S.A.103(3), 538–542 (2006). [CrossRef] [PubMed]
  29. S. A. Vanapalli, A. G. Banpurkar, D. van den Ende, M. H. G. Duits, and F. Mugele, “Hydrodynamic resistance of single confined moving drops in rectangular microchannels,” Lab Chip9(7), 982–990 (2009). [CrossRef] [PubMed]
  30. Y. Jin, and K. B. Crozier, “Microfluidic pressure measurements with optical trapping,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTu2L.3.
  31. P. Tabeling, translated by S. Lin, Introduction to Microfluidics (Oxford University Press, 2005).
  32. D. J. Acheson, Elementary Fluid Dynamics (Oxford University Press, 1990).
  33. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  34. H. Bruus, Theoretical Microfluidics (Oxford University Press, 2008).
  35. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998). [CrossRef] [PubMed]
  36. M. J. Owen and P. J. Smith, “Plasma treatment of polydimethylsiloxane,” J. Adhes. Sci. Technol.8(10), 1063–1075 (1994). [CrossRef]
  37. S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst.14(3), 590–597 (2005). [CrossRef]
  38. D. S. Viswanath, T. K. Ghosh, D. H. L. Prasad, N. V. K. Dutt, and K. Y. Rani, Viscosity of Fluids (Springer, Dordrecht, 2007).
  39. S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using flow focusing in microchannels,” Appl. Phys. Lett.82(3), 364–366 (2003). [CrossRef]
  40. P. Garstecki, H. A. Stone, and G. M. Whitesides, “Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions,” Phys. Rev. Lett.94(16), 164501 (2005). [CrossRef] [PubMed]
  41. ThorLabs model OTKG/M.
  42. M. J. Fuerstman, A. Lai, M. E. Thurlow, S. S. Shevkoplyas, H. A. Stone, and G. M. Whitesides, “The pressure drop along rectangular microchannels containing bubbles,” Lab Chip7(11), 1479–1489 (2007). [CrossRef] [PubMed]
  43. W. P. Wong and K. Halvorsen, “The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur,” Opt. Express14(25), 12517–12531 (2006). [CrossRef] [PubMed]
  44. A. R. Abate, J. Thiele, M. Weinhart, and D. A. Weitz, “Patterning microfluidic device wettability using flow confinement,” Lab Chip10(14), 1774–1776 (2010). [CrossRef] [PubMed]
  45. M. L. J. Steegmans, A. Warmerdam, K. G. P. H. Schroën, and R. M. Boom, “Dynamic interfacial tension measurements with microfluidic Y-junctions,” Langmuir25(17), 9751–9758 (2009). [CrossRef] [PubMed]
  46. T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett.86(18), 4163–4166 (2001). [CrossRef] [PubMed]
  47. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat Commun2, 469 (2011). [CrossRef] [PubMed]
  48. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Scannable plasmonic trapping using a gold stripe,” Nano Lett.10(9), 3506–3511 (2010). [CrossRef] [PubMed]
  49. K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: Evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett.9(7), 2623–2629 (2009). [CrossRef] [PubMed]
  50. H. W. Hou, Q. S. Li, G. Y. H. Lee, A. P. Kumar, C. N. Ong, and C. T. Lim, “Deformability study of breast cancer cells using microfluidics,” Biomed. Microdevices11(3), 557–564 (2009). [CrossRef] [PubMed]
  51. E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, and M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express13(10), 3777–3786 (2005). [CrossRef] [PubMed]
  52. E. Schonbrun, C. Rinzler, and K. B. Crozier, “Microfabricated water immersion zone plate optical tweezer,” Appl. Phys. Lett.92(7), 071112 (2008). [CrossRef]
  53. E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip10(7), 852–856 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited