OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24465–24471

Pressure-assisted low-loss fusion splicing between photonic crystal fiber and single-mode fiber

Tao Zhu, Fufeng Xiao, Laicai Xu, Min Liu, Ming Deng, and Kin Seng Chiang  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24465-24471 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1244 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate low-loss splicing between a photonic crystal fiber (PCF) and a single-mode fiber (SMF) with a conventional electric-arc fusion splicer, where nitrogen gas (N2) with a proper pressure is pumped into the air holes of the PCF to control the air-hole collapse ratio so as to optimize the mode-field match at the joint. The method is applicable to both solid-core and hollow-core PCFs. With this method, we achieve a splice loss (measured at 1550 nm) of ~0.40 dB for a solid-core PCF and ~1.05 dB for a hollow-core PCF. The method could find wide applications in the fabrication of PCF-based devices.

© 2012 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 2, 2012
Revised Manuscript: September 29, 2012
Manuscript Accepted: October 1, 2012
Published: October 11, 2012

Tao Zhu, Fufeng Xiao, Laicai Xu, Min Liu, Ming Deng, and Kin Seng Chiang, "Pressure-assisted low-loss fusion splicing between photonic crystal fiber and single-mode fiber," Opt. Express 20, 24465-24471 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006). [CrossRef]
  2. T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett.22(13), 961–963 (1997). [CrossRef] [PubMed]
  3. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,’,” IEEE Photon. Technol. Lett.12(7), 807–809 (2000). [CrossRef]
  4. J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003). [CrossRef] [PubMed]
  5. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett.25(18), 1325–1327 (2000). [CrossRef] [PubMed]
  6. P. J. Bennett, T. M. Monro, and D. J. Richardson, “Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization,” Opt. Lett.24(17), 1203–1205 (1999). [CrossRef] [PubMed]
  7. M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and Single-Mode Fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett.21(3), 164–166 (2009). [CrossRef]
  8. J. T. Lizier and G. E. Town, “Splice losses in holey optical fiber,” IEEE Photon. Technol. Lett.13(3), 466–467 (2001).
  9. J. H. Chong and M. K. Rao, “Development of a system for laser splicing photonic crystal fiber,” Opt. Express11(12), 1365–1370 (2003). [CrossRef] [PubMed]
  10. A. D. Yablon and R. T. Bise, “Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses,” IEEE Photon. Technol. Lett.17(1), 118–120 (2005). [CrossRef]
  11. B. Bourliaguet, C. Paré, F. Emond, A. Croteau, A. Proulx, and R. Vallée, “Microstructured fiber splicing,” Opt. Express11(25), 3412–3417 (2003). [PubMed]
  12. R. Thapa, K. Knabe, K. L. Corwin, and B. R. Washburn, “Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells,” Opt. Express14(21), 9576–9583 (2006). [CrossRef] [PubMed]
  13. L. M. Xiao, M. S. Demokan, W. Jin, Y. P. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol.25(11), 3563–3574 (2007). [CrossRef]
  14. J. T. Kristensen, A. Houmann, X. M. Liu, and D. Turchinovich, “Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression,” Opt. Express16(13), 9986–9995 (2008). [CrossRef] [PubMed]
  15. G. Fu, W. Jin, X. Fu, and W. Bi, “Air-holes collapse properties of photonic crystal fiber in heating process by CO2 laser,” IEEE Photon. Jour.4(3), 1028–1034 (2012). [CrossRef]
  16. A. Ishikura, Y. Kato, T. Ooyanagi, and M. Myauchi, “Loss factors analysis for single-mode fiber splicing without core axis alignment,” J. Lightwave Technol.7(4), 577–583 (1989). [CrossRef]
  17. L. Xiao, W. Jin, and M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single mode fibers by repeated arc discharges,” Opt. Lett.32(2), 115–117 (2007). [CrossRef] [PubMed]
  18. J. Lægsgaard and A. Bjarklev, “Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: a numerical study,” Opt. Commun.237(4-6), 431–435 (2004). [CrossRef]
  19. J. Ju, W. Jin, Y. L. Hoo, and M. S. Demokan, “A simple method for estimating the splice loss of photonic-crystal fiber/single-mode fiber,” Microw. Opt. Technol. Lett.42(2), 171–173 (2004). [CrossRef]
  20. Z. Xu, K. Duan, Z. Liu, Y. Wang, and W. Zhao, “Numerical analyses of splice losses of photonic crystal fibers,” Opt. Commun.282(23), 4527–4531 (2009). [CrossRef]
  21. G. E. Town and J. T. Lizier, “Tapered holey fibers for spot-size and numerical-aperture conversion,” Opt. Lett.26(14), 1042–1044 (2001). [CrossRef] [PubMed]
  22. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited