OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24505–24515

A study on carrier phase distortion in phase measuring deflectometry with non-telecentric imaging

Lei Song, Huimin Yue, Hanshin Kim, Yuxiang Wu, Yong Liu, and Yongzhi Liu  »View Author Affiliations


Optics Express, Vol. 20, Issue 22, pp. 24505-24515 (2012)
http://dx.doi.org/10.1364/OE.20.024505


View Full Text Article

Enhanced HTML    Acrobat PDF (1228 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In phase measuring deflectometry (PMD), the fringe pattern deformed according to slope deviation of a specular surface is digitized employing a phase-shift technique. Without height-angle ambiguity, carrier-removal process is adopted to evaluate the variation of surface slope from phase distribution when a quasi-plane is measured. However, the difficulty lies in the fact that the nonlinearity is generally contained in the carrier frequency due to the restrictions of system geometries. This paper investigates nonlinear carrier components introduced by the generalized imaging process in PMD. Furthermore, the analytical expression of carrier components in PMD is presented for the first time. The presented analytical form of carrier components can be extended to analyze and describe various effects of system parameters on carrier distortion. Assuming a pinhole perspective model, carrier phase distribution of arbitrary geometric arrangement is modeled as a function of spatial variables by exploring ray tracing method. As shown by simulation and experimental results, the carrier distortion is greatly affected by non-telecentric camera operation. Experimental results on the basis of reference subtraction technique further demonstrate that restrictions on reflection system geometry can be eliminated when the carrier phase is removed elaborately.

© 2012 OSA

OCIS Codes
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.5700) Instrumentation, measurement, and metrology : Reflection
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: July 2, 2012
Revised Manuscript: August 28, 2012
Manuscript Accepted: September 14, 2012
Published: October 11, 2012

Citation
Lei Song, Huimin Yue, Hanshin Kim, Yuxiang Wu, Yong Liu, and Yongzhi Liu, "A study on carrier phase distortion in phase measuring deflectometry with non-telecentric imaging," Opt. Express 20, 24505-24515 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-22-24505


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are,” Opt. Lasers Eng. 48(2), 133–140 (2010). [CrossRef]
  2. M. C. Knauer, J. Kaminski, and G. Häusler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366–376 (2004). [CrossRef]
  3. D. Pérard and J. Beyerer, “Three-dimensional measurement of specular free-form surfaces with a structured-lighting reflection technique,” Proc. SPIE 3204, 74–80 (1997). [CrossRef]
  4. M. C. Knauer, J. Kaminski, and G. Häusler, “Phase measuring deflectometry: a new approach to measure specular free-form surfaces,” Optical Metrology in Production Engineering, Proc. SPIE 5457, 366–376 (2004). [CrossRef]
  5. R. Muhr, G. Schutte, and M. Vincze, “A triangulation method for 3D-measurement of specular surfaces,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVIII(Part 5), 466–471 (2010).
  6. H. W. Guo, P. Feng, and T. Tao, “Specular surface measurement by using least squares light tracking technique,” Opt. Lasers Eng. 48(2), 166–171 (2010). [CrossRef]
  7. Y. Tang, X. Y. Su, Y. K. Liu, and H. Jing, “3D shape measurement of the aspheric mirror by advanced phase measuring deflectometry,” Opt. Express 16(19), 15090–15096 (2008). [CrossRef] [PubMed]
  8. C. Quan, C. J. Tay, and L. J. Chen, “A study on carrier-removal techniques in fringe projection profilometry,” Opt. Laser Technol. 39(6), 1155–1161 (2007). [CrossRef]
  9. H. W. Guo, M. Y. Chen, and P. Zheng, “Least-squares fitting of carrier phase distribution by using a rational function in profilometry fringe projection,” Opt. Lett. 31(24), 3588–3590 (2006). [CrossRef] [PubMed]
  10. B. A. Rajoub, M. J. Lalor, D. R. Burton, and S. A. Karout, “A new model for measuring object shape using non-collimated fringe-pattern projections,” J. Opt. A, Pure Appl. Opt. 9(6), S66–S75 (2007). [CrossRef]
  11. L. J. Chen and C. J. Tay, “Carrier phase component removal: a generalized least-squares approach,” J. Opt. Soc. Am. A 23(2), 435–443 (2006). [CrossRef] [PubMed]
  12. L. J. Chen and C. G. Quan, “Fringe projection profilometry with nonparallel illumination: a least-squares approach,” Opt. Lett. 30(16), 2101–2103 (2005). [CrossRef] [PubMed]
  13. W. S. Li, T. Bothe, C. von Kopylow, and W. Jüptner, “Evaluation methods for gradient measurement techniques,” Proc. SPIE 5457, 300–311 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited