OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24516–24523

Low energy-density recording with a high-repetition-rate laser beam in gold-nanorod-embedded discs

Md Azim Ullah, Xiangping Li, Xueming Cheng, Xiaojian Hao, Yahui Su, Jianshe Ma, and Min Gu  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24516-24523 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1298 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we report on the low energy-density recording with a high-repetition-rate femtosecond pulsed beam in homogenous gold-nanorod-dispersed discs by using low numerical aperture (NA) micro-optics. By focusing a femtosecond pulsed beam at a repetition rate of 82 MHz using a low NA DVD optical head, the spatially-stretched energy density introduces a temperature rising of the polymer matrix. This temperature rising facilitates the surface melting of gold nanorods, which leads to over one-order-of-magnitude reduction in the energy-density threshold for recording, compared with that by focusing single pulses through a high NA objective. Applying this finding, we demonstrate the dual-layer recording in gold-nanorod-dispersed discs with an equivalent capacity of 69 GB. Our results demonstrate the potential of ultra-high density three-dimensional optical memory with a low-cost and DVD-compatible apparatus.

© 2012 OSA

OCIS Codes
(210.0210) Optical data storage : Optical data storage
(210.4680) Optical data storage : Optical memories
(210.4810) Optical data storage : Optical storage-recording materials

ToC Category:
Optical Data Storage

Original Manuscript: July 9, 2012
Revised Manuscript: October 5, 2012
Manuscript Accepted: October 9, 2012
Published: October 11, 2012

Md Azim Ullah, Xiangping Li, Xueming Cheng, Xiaojian Hao, Yahui Su, Jianshe Ma, and Min Gu, "Low energy-density recording with a high-repetition-rate laser beam in gold-nanorod-embedded discs," Opt. Express 20, 24516-24523 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol.23(6), 741–745 (2005). [CrossRef] [PubMed]
  2. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006). [CrossRef] [PubMed]
  3. J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3866–3871 (2008). [CrossRef]
  4. J. W. M. Chon, C. Bullen, P. Zijlstra, and M. Gu, “Spectral encoding on gold nanorods doped in a silica sol-gel matrix and its application to high-density optical data storage,” Adv. Funct. Mater.17(6), 875–880 (2007). [CrossRef]
  5. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009). [CrossRef] [PubMed]
  6. H. Ditlbacher, B. Lamprecht, A. Leitner, F. R. Aussenegg, and F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett.25(8), 563–565 (2000). [CrossRef] [PubMed]
  7. X. Li, T. H. Lan, C. H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat Commun3, 998 (2012). [CrossRef] [PubMed]
  8. L. Au, J. Chen, L. V. Wang, and Y. Xia, “Gold nanocages for cancer imaging and therapy,” Methods Mol. Biol.624, 83–99 (2010). [CrossRef] [PubMed]
  9. S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, “The shape transition of gold nanorods,” Langmuir15(3), 701–709 (1999). [CrossRef]
  10. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A103(9), 1165–1170 (1999). [CrossRef]
  11. S. Link and M. A. El-Sayed, “Spectroscopic determination of the melting energy of a gold nanorod,” J. Chem. Phys.114(5), 2362–2368 (2001). [CrossRef]
  12. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Review B - Condens Matter and Mater Phys.53(4), 1749–1761 (1996). [CrossRef]
  13. S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B104(33), 7867–7870 (2000). [CrossRef]
  14. H. Petrova, J. Perez Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán, and P. Mulvaney, “On the temperature stability of gold nanorods: Comparison between thermal and ultrafast laser-induced heating,” Phys. Chem. Chem. Phys.8(7), 814–821 (2006). [CrossRef] [PubMed]
  15. M. Gu, Advanced optical imaging theory (Springer, 2000).
  16. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express13(12), 4708–4716 (2005). [CrossRef] [PubMed]
  17. A. Bejan, Heat transfer (John Wiley & Sons, 1993).
  18. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006). [CrossRef] [PubMed]
  19. P. Zijlstra, J. W. M. Chon, and M. Gu, “Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning,” Opt. Express15(19), 12151–12160 (2007). [CrossRef] [PubMed]
  20. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000). [CrossRef]
  21. W. D. Kingery, “Heat-Conductivity Processes in Glass,” J. Am. Ceram. Soc.44(7), 302–304 (1961). [CrossRef]
  22. G. V. Hartland, M. Hu, and J. E. Sader, “Softening of the symmetric breathing mode in gold particles by laser-induced heating,” J. Phys. Chem. B107(30), 7472–7478 (2003). [CrossRef]
  23. A. Plech, R. Cerna, V. Kotaidis, F. Hudert, A. Bartels, and T. Dekorsy, “A surface phase transition of supported gold nanoparticles,” Nano Lett.7(4), 1026–1031 (2007). [CrossRef] [PubMed]
  24. B. Zhang, J. Ma, L. Pan, X. Cheng, and Y. Tang, “High performance three-axis actuator in super-multi optical pickup with low crosstalk force,” IEEE Trans. Consum. Electron.54(4), 1743–1749 (2008). [CrossRef]
  25. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater.15(10), 1957–1962 (2003). [CrossRef]
  26. T. Nishino, S. Kani, K. Gotoh, and K. Nakamae, “Melt processing of poly(vinyl alcohol) through blending with sugar pendant polymer,” Polymer (Guildf.)43(9), 2869–2873 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited