OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24524–24535

Adjustable magneto-optical isolators with flat-top responses

Mehdi Zamani and Majid Ghanaatshoar  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24524-24535 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1421 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In order to construct flat-top magneto-optical isolators (MOIs), we have performed a theoretical study on the case of transmission-type one-dimensional magnetophotonic crystals (MPCs). We have introduced high performance MPC structures with flat-top responses and with the capability of adjusting to perfect MOIs. The adjustment is carried out by tuning the applied magnetic field. All introduced MOIs are sufficiently thin with acceptable transmission bandwidth. In the best case, we have achieved a 19.42 μm-thick perfect MOI with the flat-top width of 7.2 nm. For practical purposes, we have also considered the influence of the error in thickness of individual layers on the operational parameters of the MOIs and investigated the possibility of compensating the deviations by the magnetic adjustment.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.3240) Optical devices : Isolators
(230.3810) Optical devices : Magneto-optic systems
(160.5293) Materials : Photonic bandgap materials

ToC Category:
Integrated Optics

Original Manuscript: August 20, 2012
Revised Manuscript: September 24, 2012
Manuscript Accepted: September 24, 2012
Published: October 11, 2012

Mehdi Zamani and Majid Ghanaatshoar, "Adjustable magneto-optical isolators with flat-top responses," Opt. Express 20, 24524-24535 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express19, 11740–11745 (2011). [CrossRef] [PubMed]
  2. H. Zhu and C. Jiang, “Optical isolation based on nonreciprocal micro-ring resonator,” J. Lightwave Technol.29, 1647–1651 (2011). [CrossRef]
  3. Y. Sun, H. Zhou, Xi. Jiang, Y. Hao, J. Yang, and M. Wang, “Integrated optical isolators based on two-mode interference couplers,” J. Opt.12, 015403 (2010). [CrossRef]
  4. A. Alberucci and G. Assanto, “All-optical isolation by directional coupling,” Opt. Lett.33, 1641–1643 (2008). [CrossRef] [PubMed]
  5. H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A78, 023804 (2008). [CrossRef]
  6. Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: An illustration with a four-port circulator,” Photon. Nanostruct.: Fundam. Appl.4, 132–140 (2006). [CrossRef]
  7. S. M. Drezdzon and T. Yoshie, “On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff,” Opt. Express17, 9276–9281 (2009). [CrossRef] [PubMed]
  8. T. R. Zaman, X. Guo, and R. J. Ram, “Semiconductor waveguide isolators,” J. Lightwave Technol.26, 291–301 (2008).RoelkensG. [CrossRef]
  9. S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, and R. Baets, “Ce:YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding,” Opt. Express20, 1839–1848 (2012). [CrossRef] [PubMed]
  10. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5, 758–762 (2011). [CrossRef]
  11. R. Chen, D. Tao, H. Zhou, Y. Hao, Ji. Yang, M. Wang, and X. Jiang, “Asymmetric multimode interference isolator based on nonreciprocal phase shift,” Opt. Commun.282, 862–866 (2009). [CrossRef]
  12. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3, 91–94 (2009). [CrossRef]
  13. Z. Yu and S. Fan, “Integrated nonmagnetic optical isolators based on photonic transitions,” IEEE J. Sel. Top. Quantum Electron.16, 459–466 (2010). [CrossRef]
  14. A. E. Serebryannikov and E. Ozbay, “Isolation and one-way effects in diffraction on dielectric gratings with plasmonic inserts,” Opt. Express17, 278–292 (2009). [CrossRef] [PubMed]
  15. J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys.106, 023108 (2009).
  16. H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu, and M. Wang, “Wavelength-selective optical waveguide isolator based on nonreciprocal ring-coupled Mach-Zehnder interferometer,” J. Lightwave Technol.26, 3166–3172 (2008). [CrossRef]
  17. Y. Shoji and T. Mizumoto, “Wideband operation of Mach-Zehnder interferometric magneto-optical isolator using phase adjustment,” Opt. Express20, 13446–13450 (2007). [CrossRef]
  18. M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Adjustable magneto-optical isolator with high transmittance and large Faraday rotation,” J. Opt. Soc. Am. B28, 2637–2642 (2011). [CrossRef]
  19. T. Sun, J. Luo, P. Xu, and L. Gao, “Independently tunable transmission-type magneto-optical isolators based on multilayers containing magnetic materials,” Phys. Lett. A375, 2185–2188 (2011). [CrossRef]
  20. S. M. Hamidi and M. M. Tehranchi, “High transmission enhanced Faraday rotation in coupled resonator magneto-optical waveguides,” J. Lightwave Technol.28, 2139–2145 (2010). [CrossRef]
  21. X. Wen, G. Li, G. Qiu, Y. Li, L. Ding, and Z. Sui, “Research on a new type of magneto-optical multilayer films (MOMF) isolator,” Proc. SPIE5644, 563 (2005). [CrossRef]
  22. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Effect of optical losses on optical and magneto-optical properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” Opt. Commun.219, 271–276 (2003). [CrossRef]
  23. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Properties of one-dimensional magnetophotonic crystals for use in optical isolator devices,” J. IEEE. Trans. Magn.38, 3246–3248 (2002). [CrossRef]
  24. M. Levy, H. C. Yang, M. J. Steel, and J. Fujita, “Flat-top response in one-dimensional magnetic photonic bandgap structures with Faraday rotation enhancement,” J. Lightwave Technol.19, 1964–1969 (2001). [CrossRef]
  25. M. J. Steel, M. Levy, and R. M. Osgood, “High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects,” IEEE. Photon. Technol. Lett.12, 1171–1173 (2000). [CrossRef]
  26. Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum.71, 1243–1255 (2000). [CrossRef]
  27. J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Fundamental magneto-optics,” J. Appl. Phys.68, 4203–4207 (1990). [CrossRef]
  28. M. Vasiliev, V. A. Kotov, K. E. Alameh, V. I. Belotelov, and A. K. Zvezdin, “Novel magnetic photonic crystal structures for magnetic field sensors and visualizers,” IEEE Trans. Magn.44, 323–328 (2008). [CrossRef]
  29. F. Tian, C. Wang, G. Y. Shang, N. X. Wang, and C. L. Bai, “Magnetic force microscope images of magnetic domains in magnetic garnet,” J. Vac. Sci. Technol. B15, 1343–1346 (1997). [CrossRef]
  30. S. Visnovsky, Optics in Magnetic Multilayers and Nanostructures (Taylor & Francis Group, 2006).
  31. T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett.71, 1640–1642 (1997). [CrossRef]
  32. T. Uno and S. Nage, “Growth of magneto-optic Ce:YIG thin films on amorphous silica substrates,” J. Europ. Ceramic Soc.21, 1957–1960 (2001). [CrossRef]
  33. W. Bao-Jian, L. Fen, L. Shuo, and H. Wei, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett.5, 268–272 (2009). [CrossRef]
  34. M. Zamani, M. Ghanaatshoar, and H. Alisafaee, “Compact one-dimensional magnetophotonic crystals with simultaneous large Faraday rotation and high transmittance,” J. Mod. Opt.59, 126–130 (2012). [CrossRef]
  35. S. M. Hamidi and M. M. Tehranchi, “Cavity enhanced longitudinal magneto-optical Kerr effect in magneto-plasmonic multilayers consisting of Ce:YIG thin films incorporating gold nanoparticles,” J. Supercond. Nov. Magn.25, 2097–2100 (2012). [CrossRef]
  36. T. Shintaku, T. Uno, and M. Kobayashi, “Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet,” J. Appl. Phys.74, 4877–4881 (1993). [CrossRef]
  37. M. C. Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94, 181916 (2009). [CrossRef]
  38. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83, 3323–3336 (1998). [CrossRef]
  39. F. Lopez and E. Bernabeu, “Refractive index of vacuum-evaporated SiO thin films: dependence on substrate temperature,” Thin Solid Films191, 13–19 (1990). [CrossRef]
  40. H. Alisafaee and M. Ghanaatshoar, “Optimization of all-garnet magneto-optical magnetic field sensors with genetic algorithm,” Appl. Opt.51, 5144–5148 (2012). [CrossRef] [PubMed]
  41. M. Ghanaatshoar, M. Zamani, and H. Alisafaee, “Compact 1-D magnetophotonic crystals with simultaneous large magnetooptical Kerr rotation and high reflectance,” Opt. Commun.284, 3635–3638 (2011). [CrossRef]
  42. M. Levy, A. A. Jalali, and X. Huang, “Magnetophotonic crystals: nonreciprocity, birefringence and confinement,” J. Mater. Sci. Mater. Electron.20, S43–S47 (2009). [CrossRef]
  43. M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. Chung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” J. IEEE Trans. Electron.E91-C, 1630–1638 (2008).
  44. V. I. Belotelov and A. K. Zvezdin, “Magneto-optical properties of photonic crystals” J. Opt. Soc. Am. B22, 286–292 (2005). [CrossRef]
  45. S. Kahl and A. M. Grishin, “Magneto-optical rotation of a one-dimensional all-garnet photonic crystal in transmission and reflection,” Phys. Rev. B71, 205110–205114 (2005). [CrossRef]
  46. M. Sharifian, H. Ghadiri, M. Zamani, and M. Ghanaatshoar, “Influence of thickness error on the operation of adjustable magneto-optical isolators,” J. Appl. Opt.51, 4873–4878 (2012). [CrossRef]
  47. Y. P. Wang, D. G. Zhang, H. Zhou, and Z. B. Ouyang, “Error analysis of one-dimensional magneto-photonic crystals used as Faraday rotators,” in Symposium on Photonics and Optoelectronics, 2009. SOPO 2009 (IEEE, 2009), pp. 1–4. [CrossRef]
  48. C. Wang, C. Z. Zhou, and Z. Y. Li, “On-chip optical diode based on silicon photonic crystal heterojunctions,” Opt. Express19, 26948–26955 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited