OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24536–24544

Excitation of single multipolar modes with engineered cylindrically symmetric fields

Xavier Zambrana-Puyalto, Xavier Vidal, and Gabriel Molina-Terriza  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24536-24544 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1894 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new method to address multipolar resonances and to control the scattered field of a spherical scatterer. This method is based on the engineering of the multipolar content of the incident beam. We propose experimentally feasible techniques to generate light beams which contain only a few multipolar modes. The technique uses incident beams with a well defined component of the angular momentum and appropriate focusing with aplanatic lenses. The control of the multipolar content of light beams allow for the excitation of single Mie resonances and unprecedented control of the scattered field from spherical particles.

© 2012 OSA

OCIS Codes
(260.5430) Physical optics : Polarization
(260.5740) Physical optics : Resonance
(290.4020) Scattering : Mie theory
(080.4865) Geometric optics : Optical vortices
(070.5753) Fourier optics and signal processing : Resonators
(290.5825) Scattering : Scattering theory

ToC Category:

Original Manuscript: August 21, 2012
Revised Manuscript: September 27, 2012
Manuscript Accepted: September 27, 2012
Published: October 12, 2012

Xavier Zambrana-Puyalto, Xavier Vidal, and Gabriel Molina-Terriza, "Excitation of single multipolar modes with engineered cylindrically symmetric fields," Opt. Express 20, 24536-24544 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. G. Gadian, Nuclear Magnetic Resonance and its Applications to Living Systems (Oxford University Press, New York, 1982).
  2. K. Y. Billah and R. H. Scanlan, “Resonance, tacoma narrows bridge failure, and undergraduate physics textbooks,” Am. J. Phys.59, 118–124 (1991). [CrossRef]
  3. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010). [CrossRef]
  4. R. Lopez, T. E. Haynes, L. A. Boatner, L. C. Feldman, and J. R. F. Haglund, “Temperature-controlled surface plasmon resonance in vo 2 nanorods,” Opt. Lett.27, 1327–1329 (2002). [CrossRef]
  5. N. M. Mojarad, V. Sandoghdar, and M. Agio, “Plasmon spectra of nanospheres under a tightly focused beam,” J. Opt. Soc. Am. B25, 651–658 (2008). [CrossRef]
  6. J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y.-R. Shen, and G. Wang, “Electrical control of plasmon resonance with graphene,” arXiv:1206.1124v1.
  7. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124, 1866–1878 (1961). [CrossRef]
  8. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715 (2010). [CrossRef]
  9. W. Hergert and T. Wriedt, The Mie Theory (Springer, Berlin, 2012). [CrossRef]
  10. G. Gouesbet and G. Gréhan, Generalized Lorenz-Mie Theories (Springer, Berlin, 2011). [CrossRef]
  11. G. Gouesbet, J. Lock, and G. Gréhan, “Generalized Lorenz-Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer112, 1–27 (2011). [CrossRef]
  12. M. E. Rose, Multipole Fields (Wiley, New York, 1955).
  13. N. Tischler, X. Zambrana-Puyalto, and G. Molina-Terriza, “The role of angular momentum in the construction of electromagnetic multipolar fields,” Eur. J. Phys.33, 1099–1109 (2012). [CrossRef]
  14. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45, 8185–8189 (1992). [CrossRef] [PubMed]
  15. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser & Photon. Rev.2, 299–313 (2008). [CrossRef] [PubMed]
  16. V. B. Berestetskii, L. P. Pitaevskii, and E. M. Lifshitz, Quantum Electrodynamics, 2nd ed. vol. 4(Butterworth-Heinemann, 1982).
  17. I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity and angular momentum. a symmetry based framework for the study of light-matter interactions.” arXiv:1206.5563v1 (2012).
  18. A. S. van de Nes and P. Török, “Rigorous analysis of spheres in Gauss-Laguerre beams,” Opt. Express15, 13360–13374 (2007). [CrossRef] [PubMed]
  19. D. Petrov, N. Rahuel, G. Molina-Terriza, and L. Torner, “Characterization of dielectric spheres by spiral imaging,” Opt. Lett.37, 869–871 (2012). [CrossRef] [PubMed]
  20. A. B. Stilgoe, T. A. Nieminen, G. Knöener, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers,” Opt. Express16, 15039–15051 (2008). [CrossRef] [PubMed]
  21. M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express18, 11428–11443 (2010). [CrossRef] [PubMed]
  22. A. Novitsky, C.-W. Qiu, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett.107, 203601 (2011). [CrossRef] [PubMed]
  23. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19, 4815–4826 (2011). [CrossRef] [PubMed]
  24. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep.2, 492 (2012). [CrossRef] [PubMed]
  25. A. E. Miroshnichenko, B. Luk’yanchuk, S. A. Maier, and Y. S. Kivshar, “Optically induced interaction of magnetic moments in hybrid metamaterials,” ACS Nano6, 837–842 (2012). [CrossRef]
  26. D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100, 201113 (2012). [CrossRef]
  27. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambdrige, MA, 2006). [CrossRef]
  28. G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: Preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett.88, 013601 (2001). [CrossRef]
  29. I. Fernandez-Corbaton, X. Zambrana-Puyalto, N. Tischler, A. Minovich, X. Vidal, M. L. Juan, and G. Molina-Terriza, “Experimental demonstration of electromagnetic duality symmetry breaking,” arXiv:1206.0868v1 (2012).
  30. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill and Kogakusha Book Companies, 1953).
  31. G. Molina-Terriza, “Determination of the total angular momentum of a paraxial beam,” Phys. Rev. A78, 053819 (2008). [CrossRef]
  32. M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957).
  33. W.-K. Tung, Group Theory in Physics (World Scientific, Singapore, 1985).
  34. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  35. J. D. Jackson, Classical Electrodynamics, vol. 2011 (John Wiley & Sons, New York, 1998).
  36. S. Schiller and R. L. Byer, “High-resolution spectroscopy of whispering gallery modes in large dielectric spheres,” Opt. Lett.16, 1138–1140 (1991). [CrossRef] [PubMed]
  37. A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron.32, 377–400 (2002). [CrossRef]
  38. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express12, 1214–1220 (2004). [CrossRef] [PubMed]
  39. A. Heifetz, S. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci.6, 1979–1992 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited