OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24559–24574

Symbiotic two-component gap solitons

Athikom Roeksabutr, Thawatchai Mayteevarunyoo, and Boris A. Malomed  »View Author Affiliations


Optics Express, Vol. 20, Issue 22, pp. 24559-24574 (2012)
http://dx.doi.org/10.1364/OE.20.024559


View Full Text Article

Enhanced HTML    Acrobat PDF (2875 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider a two-component one-dimensional model of gap solitons (GSs), which is based on two nonlinear Schrödinger equations, coupled by repulsive XPM (cross-phase-modulation) terms, in the absence of the SPM (self-phase-modulation) nonlinearity. The equations include a periodic potential acting on both components, thus giving rise to GSs of the “symbiotic” type, which exist solely due to the repulsive interaction between the two components. The model may be implemented for “holographic solitons” in optics, and in binary bosonic or fermionic gases trapped in the optical lattice. Fundamental symbiotic GSs are constructed, and their stability is investigated, in the first two finite bandgaps of the underlying spectrum. Symmetric solitons are destabilized, including their entire family in the second bandgap, by symmetry-breaking perturbations above a critical value of the total power. Asymmetric solitons of intra-gap and inter-gap types are studied too, with the propagation constants of the two components falling into the same or different bandgaps, respectively. The increase of the asymmetry between the components leads to shrinkage of the stability areas of the GSs. Inter-gap GSs are stable only in a strongly asymmetric form, in which the first-bandgap component is a dominating one. Intra-gap solitons are unstable in the second bandgap. Unstable two-component GSs are transformed into persistent breathers. In addition to systematic numerical considerations, analytical results are obtained by means of an extended (“tailed”) Thomas-Fermi approximation (TFA).

© 2012 OSA

OCIS Codes
(020.1475) Atomic and molecular physics : Bose-Einstein condensates
(160.5293) Materials : Photonic bandgap materials
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 31, 2012
Manuscript Accepted: October 2, 2012
Published: October 12, 2012

Citation
Athikom Roeksabutr, Thawatchai Mayteevarunyoo, and Boris A. Malomed, "Symbiotic two-component gap solitons," Opt. Express 20, 24559-24574 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-22-24559


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B: Quant. Semicl. Opt.7, R53–R72 (2005). [CrossRef]
  2. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete Solitons in Optics,” Phys. Rep.463, 1 (2008). [CrossRef]
  3. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Soliton shape and mobility control in optical lattices,” Progr. Opt.52, 63–148 (2009). [CrossRef]
  4. Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattice,” Rev. Mod. Phys.83, 247–306 (2011). [CrossRef]
  5. L. Pitaevskii and S. Stringari, Bose-Einstein Condensate (Clarendon Press: Oxford, 2003).
  6. H. T. C. Stoof, K. B. Gubbels, and D. B. M. Dickerscheid, Ultracold Quantum Fields (Springer: Dordrecht, 2009).
  7. O. Morsch and M. Oberthaler, “Dynamics of Bose-Einstein condensates in optical lattices,” Rev. Mod. Phys.78, 179–215 (2006). [CrossRef]
  8. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press: Princeton, 2008).
  9. A. Szameit, D. Blömer, J. Burghoff, T. Schreiber, T. Pertsch, S. Nolte, and A. Tünnermann, 2005, “Discrete nonlinear localization in femtosecond laser written waveguides in fused silica,” Opt. Express13, 10552–10557 (2005). [CrossRef] [PubMed]
  10. N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E66, 046602 (2002). [CrossRef]
  11. J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems (SIAM: Philadelphia, 2010). [CrossRef]
  12. D. E. Pelinovsky, Localization in Periodic Potentials (Cambridge University Press: Cambridge, UK, 2011). [CrossRef]
  13. B. B. Baizakov, V. V. Konotop, and M. Salerno, “Regular spatial structures in arrays of Bose–Einstein condensates induced by modulational instability,” J. Phys. B: At. Mol. Opt. Phys.35, 5105–5119 (2002). [CrossRef]
  14. P. J. Y. Louis, E. A. Ostrovskaya, C. M. Savage, and Y. S. Kivshar, “Bose-Einstein condensates in optical lattices: Band-gap structure and solitons,” Phys. Rev. A67, 013602 (2003). [CrossRef]
  15. H. Sakaguchi and B. A. Malomed, “Dynamics of positive- and negative-mass solitons in optical lattices and inverted traps,” J. Phys. B37, 1443–1459 (2004). [CrossRef]
  16. B. Baizakov, B. A. Malomed, and M. Salerno, “Matter-wave solitons in radially periodic potentials,” Phys. Rev. E74, 066615 (2006). [CrossRef]
  17. V. A. Brazhnyi and V. V. Konotop, “Theory of nonlinear matter waves in optical lattices,” Mod. Phys. Lett. B18, 627–651 (2004). [CrossRef]
  18. B. B. Baizakov, B. A. Malomed, and M. Salerno, “Multidimensional solitons in periodic potentials,” Europhys. Lett.63, 642–648 (2003). [CrossRef]
  19. J. Yang and Z. H. Musslimani, “Fundamental and vortex solitons in a two-dimensional optical lattice,” Opt. Lett.28, 2094–2096 (2003). [CrossRef] [PubMed]
  20. Z. H. Musslimani and J. Yang, “Self-trapping of light in a two-dimensional photonic lattice,” J. Opt. Soc. Am. B21, 973–981 (2004). [CrossRef]
  21. B. B. Baizakov, B. A. Malomed, and M. Salerno, “Multidimensional solitons in a low-dimensional periodic potential,” Phys. Rev. A70, 053613 (2004). [CrossRef]
  22. D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, and L. Torner, “Stable three-dimensional spatiotemporal solitons in a two-dimensional photonic lattice,” Phys. Rev. E70, 055603(R) (2004). [CrossRef]
  23. B. B. Baizakov, B. A. Malomed, and M. Salerno, “Multidimensional semi-gap solitons in a periodic potential,” Eur. Phys. J.38, 367–374 (2006). [CrossRef]
  24. B. Baizakov, B. A. Malomed, and M. Salerno, “Matter-wave solitons in radially periodic potentials,” Phys. Rev. E74, 066615 (2006). [CrossRef]
  25. T. Mayteevarunyoo, B. A. Malomed, B. B. Baizakov, and M. Salerno, “Matter-wave vortices and solitons in anisotropic optical lattices,” Physica D238, 1439–1448 (2009). [CrossRef]
  26. K. M. Hilligsoe, M. K. Oberthaler, and K. P. Marzlin, “Stability of gap solitons in a Bose-Einstein condensate,” Phys. Rev. A66, 063605 (2002). [CrossRef]
  27. D. E. Pelinovsky, A. A. Sukhorukov, and Y. S. Kivshar, “Bifurcations and stability of gap solitons in periodic potentials,” Phys. Rev. E70, 036618 (2004). [CrossRef]
  28. G. Hwanga, T. R. Akylas, and J. Yang, “Gap solitons and their linear stability in one-dimensional periodic media,” Physica D240, 1055–1068 (2011). [CrossRef]
  29. J. Cuevas, B. A. Malomed, P. G. Kevrekidis, and D. J. Frantzeskakis, “Solitons in quasi-one-dimensional Bose-Einstein condensates with competing dipolar and local interactions,” Phys. Rev. A79, 053608 (2009). [CrossRef]
  30. Z. Shi, J. Wang, Z. Chen, and J. Yang, “Linear instability of two-dimensional low-amplitude gap solitons near band edges in periodic media,” Phys. Rev. A78, 063812 (2008). [CrossRef]
  31. A. Gubeskys, B. A. Malomed, and I. M. Merhasin, “Two-component gap solitons in two- and one-dimensional Bose-Einstein condensate,” Phys. Rev. A73, 023607 (2006). [CrossRef]
  32. S. K. Adhikari and B. A. Malomed, “Symbiotic gap and semigap solitons in Bose-Einstein condensates,” Phys. Rev. A77, 023607 (2008). [CrossRef]
  33. V. M. Pérez-García and J. B. Beitia, “Symbiotic solitons in heteronuclear multicomponent Bose-Einstein condensates,” Phys. Rev. A72, 033620 (2005). [CrossRef]
  34. S. K. Adhikari, “Bright solitons in coupled defocusing NLS equation supported by coupling: Application to Bose-Einstein condensation,” Phys. Lett. A346, 179–185 (2005). [CrossRef]
  35. S. K. Adhikari, “Fermionic bright soliton in a boson-fermion mixture,” Phys. Rev. A72, 053608 (2005). [CrossRef]
  36. S. K. Adhikari and B. A. Malomed, “Two-component gap solitons with linear interconversion,” Phys. Rev. A79, 015602 (2009). [CrossRef]
  37. O. V. Borovkova, B. A. Malomed, and Y. V. Kartashov, “Two-dimensional vector solitons stabilized by a linear or nonlinear lattice acting in one component,” EPL92, 64001 (2010). [CrossRef]
  38. M. Matuszewski, B. A. Malomed, and M. Trippenbach, “Competition between attractive and repulsive interactions in two-component Bose-Einstein condensates trapped in an optical lattice,” Phys. Rev. A76, 043826 (2007). [CrossRef]
  39. O. Cohen, T. Carmon, M. Segev, and S. Odoulov, “Holographic solitons,” Opt. Lett.27, 2031–2033 (2002). [CrossRef]
  40. O. Cohen, M. M. Murnane, H. C. Kapteyn, and M. Segev, “Cross-phase-modulation nonlinearities and holographic solitons in periodically poled photovoltaic photorefractives,” Opt. Lett.31, 954–956 (2006). [CrossRef] [PubMed]
  41. J. R. Salgueiro, A. A. Sukhorukov, and Y. S. Kivshar, “Spatial optical solitons supported by mutual focusing,” Opt. Lett.28, 1457–1459 (2003).
  42. J. Liu, S. Liu, G. Zhang, and C. Wang, “Observation of two-dimensional holographic photovoltaic bright solitons in a photorefractive-photovoltaic crystal,” Appl. Phys. Lett.91, 111113 (2007). [CrossRef]
  43. S. Adhikari and B. A. Malomed, “Gap solitons in a model of a superfluid fermion gas in optical lattices,” Physica D238, 1402–1412 (2009). [CrossRef]
  44. N. K. Efremidis and D. N. Christodoulides, “Lattice solitons in Bose-Einstein condensates,” Phys. Rev. A67, 063608 (2003). [CrossRef]
  45. T. Mayteevarunyoo and B. A. Malomed, “Stability limits for gap solitons in a Bose-Einstein condensate trapped in a time-modulated optical lattice,” Phys. Rev. A74, 033616 (2006). [CrossRef]
  46. J. Cuevas, B. A. Malomed, P. G. Kevrekidis, and D. J. Frantzeskakis, “Solitons in quasi-one-dimensional Bose-Einstein condensates with competing dipolar and local interactions,” Phys. Rev. A79, 053608 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited