OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24585–24599

Flexible structured illumination microscope with a programmable illumination array

Pavel Křížek, Ivan Raška, and Guy M. Hagen  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24585-24599 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1950 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Structured illumination microscopy (SIM) has grown into a family of methods which achieve optical sectioning, resolution beyond the Abbe limit, or a combination of both effects in optical microscopy. SIM techniques rely on illumination of a sample with patterns of light which must be shifted between each acquired image. The patterns are typically created with physical gratings or masks, and the final optically sectioned or high resolution image is obtained computationally after data acquisition. We used a flexible, high speed ferroelectric liquid crystal microdisplay for definition of the illumination pattern coupled with widefield detection. Focusing on optical sectioning, we developed a unique and highly accurate calibration approach which allowed us to determine a mathematical model describing the mapping of the illumination pattern from the microdisplay to the camera sensor. This is important for higher performance image processing methods such as scaled subtraction of the out of focus light, which require knowledge of the illumination pattern position in the acquired data. We evaluated the signal to noise ratio and the sectioning ability of the reconstructed images for several data processing methods and illumination patterns with a wide range of spatial frequencies. We present our results on a thin fluorescent layer sample and also on biological samples, where we achieved thinner optical sections than either confocal laser scanning or spinning disk microscopes.

© 2012 OSA

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(180.1790) Microscopy : Confocal microscopy
(180.2520) Microscopy : Fluorescence microscopy
(230.6120) Optical devices : Spatial light modulators
(150.1488) Machine vision : Calibration

ToC Category:

Original Manuscript: August 27, 2012
Revised Manuscript: September 26, 2012
Manuscript Accepted: September 28, 2012
Published: October 12, 2012

Pavel Křížek, Ivan Raška, and Guy M. Hagen, "Flexible structured illumination microscope with a programmable illumination array," Opt. Express 20, 24585-24599 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Heintzmann, “Structured illumination methods,” in Handbook of Biological Confocal Microscopy 3rd ed., J. B. Pawley, ed. (Springer Science + Business Media, 2006), pp. 265–279.
  2. T. Wilson, “Optical sectioning in fluorescence microscopy,” J. Microsc.242(2), 111–116 (2011). [CrossRef] [PubMed]
  3. M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997). [CrossRef] [PubMed]
  4. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc.198(2), 82–87 (2000). [CrossRef] [PubMed]
  5. R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE3568, 185–196 (1999). [CrossRef]
  6. F. Chasles, B. Dubertret, and A. C. Boccara, “Optimization and characterization of a structured illumination microscope,” Opt. Express15(24), 16130–16140 (2007). [CrossRef] [PubMed]
  7. T. Fukano and A. Miyawaki, “Whole-field fluorescence microscope with digital micromirror device: imaging of biological samples,” Appl. Opt.42(19), 4119–4124 (2003). [CrossRef] [PubMed]
  8. T. Fukano, A. Sawano, Y. Ohba, M. Matsuda, and A. Miyawaki, “Differential Ras activation between caveolae/raft and non-raft microdomains,” Cell Struct. Funct.32(1), 9–15 (2007). [CrossRef] [PubMed]
  9. D. M. Rector, D. M. Ranken, and J. S. George, “High-performance confocal system for microscopic or endoscopic applications,” Methods30(1), 16–27 (2003). [CrossRef] [PubMed]
  10. S. Monneret, M. Rauzi, and P. F. Lenne, “Highly flexible whole-field sectioning microscope with liquid-crystal light modulator,” J. Opt. A, Pure Appl. Opt.8(7), S461–S466 (2006). [CrossRef]
  11. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods6(5), 339–342 (2009). [CrossRef] [PubMed]
  12. L. Shao, P. Kner, E. H. Rego, and M. G. L. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods8(12), 1044–1046 (2011). [CrossRef] [PubMed]
  13. G. M. Hagen, W. Caarls, K. A. Lidke, A. H. B. deVries, C. Fritsch, B. G. Barisas, D. J. Arndt-Jovin, and T. M. Jovin, “Fluorescence recovery after photobleaching and photoconversion in multiple arbitrary regions of interest using a programmable array microscope,” Microsc. Res. Tech.72, 431–440 (2009). [CrossRef] [PubMed]
  14. G. M. Hagen, W. Caarls, M. Thomas, A. Hill, K. A. Lidke, B. Rieger, C. Fritsch, B. van Geest, T. M. Jovin, and D. J. Arndt-Jovin, “Biological applications of an LCoS-based programmable array microscope,” Proc. SPIE6441, 64410S (2007).
  15. R. Heintzmann and P. A. Benedetti, “High-resolution image reconstruction in fluorescence microscopy with patterned excitation,” Appl. Opt.45(20), 5037–5045 (2006). [CrossRef] [PubMed]
  16. D. Armitage, I. Underwood, and S.-T. Wu, Introduction to Microdisplays (John Wiley and Sons, 2006), p. 377.
  17. R. Heintzmann, Q. S. Hanley, D. Arndt-Jovin, and T. M. Jovin, “A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images,” J. Microsc.204(2), 119–135 (2001). [CrossRef] [PubMed]
  18. C. Ventalon and J. Mertz, “Dynamic speckle illumination microscopy with translated versus randomized speckle patterns,” Opt. Express14(16), 7198–7209 (2006). [CrossRef] [PubMed]
  19. M. Šonka, V. Hlaváč, and R. Boyle, Image Processing Analysis and Machine Vision 2nd ed. (PWS Publishing, 1998), p. 770.
  20. D. C. Brown, “Decentering distortion of lenses,” Photogramm. Eng.32, 444–462 (1966).
  21. J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Trans. Pattern Anal. Mach. Intell.14(10), 965–980 (1992). [CrossRef]
  22. J. A. Noble, “Descriptions of image surfaces,” (University of Oxford, Oxford, 1989).
  23. M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc.203(3), 246–257 (2001). [CrossRef] [PubMed]
  24. Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. J. Arndt-Jovin, and T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc.196(3), 317–331 (1999). [CrossRef] [PubMed]
  25. P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. vanVliet, and T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc.189(3), 192–198 (1998). [CrossRef]
  26. R. Wolleschensky, B. Zimmermann, and M. Kempe, “High-speed confocal fluorescence imaging with a novel line scanning microscope,” J. Biomed. Opt.11(6), 064011 (2006). [CrossRef] [PubMed]
  27. P. A. A. DeBeule, A. H. B. deVries, D. J. Arndt-Jovin, and T. M. Jovin, “Generation-3 programmable array microscope (PAM) with digital micro-mirror device (DMD),” Proc. SPIE7932(1), 79320G (2011). [CrossRef]
  28. P. Křížek and G. M. Hagen, “Spatial light modulators in fluorescence microscopy,” in Microscopy: Science, Technology, Applications and Education 4th ed., A. Méndez-Vilas and J. Díaz, eds. (Formatex, 2010), pp. 1366–1377.
  29. L. M. Hirvonen, K. Wicker, O. Mandula, and R. Heintzmann, “Structured illumination microscopy of a living cell,” Eur. Biophys. J.38(6), 807–812 (2009). [CrossRef] [PubMed]
  30. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods8(5), 417–423 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited