OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24623–24635

In situ 3D characterization of historical coatings and wood using multimodal nonlinear optical microscopy

Gaël Latour, Jean-Philippe Echard, Marie Didier, and Marie-Claire Schanne-Klein  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24623-24635 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1513 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate multimodal nonlinear optical imaging of historical artifacts by combining Second Harmonic Generation (SHG) and Two-Photon Excited Fluorescence (2PEF) microscopies. We first identify the nonlinear optical response of materials commonly encountered in coatings of cultural heritage artifacts by analyzing one- and multi-layered model samples. We observe 2PEF signals from cochineal lake and sandarac and show that pigments and varnish films can be discriminated by exploiting their different emission spectral ranges as in luminescence linear spectroscopy. We then demonstrate SHG imaging of a filler, plaster, composed of bassanite particles which exhibit a non centrosymmetric crystal structure. We also show that SHG/2PEF imaging enables the visualization of wood microstructure through typically 60 µm-thick coatings by revealing crystalline cellulose (SHG signal) and lignin (2PEF signal) in the wood cell walls. Finally, in situ multimodal nonlinear imaging is demonstrated in a historical violin. SHG/2PEF imaging thus appears as a promising non-destructive and contactless tool for in situ 3D investigation of historical coatings and more generally for wood characterization and coating analysis at micrometer scale.

© 2012 OSA

OCIS Codes
(180.6900) Microscopy : Three-dimensional microscopy
(190.4180) Nonlinear optics : Multiphoton processes
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(310.3840) Thin films : Materials and process characterization
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: July 13, 2012
Revised Manuscript: September 5, 2012
Manuscript Accepted: October 1, 2012
Published: October 12, 2012

Gaël Latour, Jean-Philippe Echard, Marie Didier, and Marie-Claire Schanne-Klein, "In situ 3D characterization of historical coatings and wood using multimodal nonlinear optical microscopy," Opt. Express 20, 24623-24635 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Gierlinger and M. Schwanninger, “Chemical imaging of poplar wood cell walls by confocal Raman microscopy,” Plant Physiol.140(4), 1246–1254 (2006). [CrossRef] [PubMed]
  2. G. Latour, J.-P. Echard, B. Soulier, I. Emond, S. Vaiedelich, and M. Elias, “Structural and optical properties of wood and wood finishes studied using optical coherence tomography: application to an 18th century Italian violin,” Appl. Opt.48(33), 6485–6491 (2009). [CrossRef] [PubMed]
  3. P. Targowski and M. Iwanicka, “Optical coherence tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects—a review,” Appl. Phys. A Mater. Sci. Process.106(2), 265–277 (2012). [CrossRef]
  4. G. Latour, G. Georges, L. Siozade, C. Deumie, and J.-P. Echard, “Study of varnish layers with optical coherence tomography in both visible and infrared domains,” Proc. SPIE7391, 73910J, 73910J-7 (2009). [CrossRef]
  5. G. Latour, J. Moreau, M. Elias, and J.-M. Frigerio, “Micro-spectrometry in the visible range with full-field optical coherence tomography for single absorbing layers,” Opt. Commun.283(23), 4810–4815 (2010). [CrossRef]
  6. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  7. F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci.51(5), 2459–2465 (2010). [CrossRef] [PubMed]
  8. M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: A coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B114(31), 10200–10208 (2010). [CrossRef] [PubMed]
  9. G. Filippidis, M. Massaouti, A. Selimis, E. Gualda, J.-M. Manceau, and S. Tzortzakis, “Nonlinear imaging and THz diagnostic tools in the service of cultural heritage,” Appl. Phys. A Mater. Sci. Process.106(2), 257–263 (2012). [CrossRef]
  10. I. G. Cormack, P. Loza-Alvarez, L. Sarrado, S. Tomás, I. Amat-Roldan, L. Torner, D. Artigas, J. Guitart, J. Pera, and J. Ros, “Lost writing uncovered by laser two-photon fluorescence provides a terminus post quem for Roman colonization of Hispania Citerior,” J. Archaeol. Sci.34(10), 1594–1600 (2007). [CrossRef]
  11. G. Filippidis, E. J. Gualda, K. Melessanaki, and C. Fotakis, “Nonlinear imaging microscopy techniques as diagnostic tools for art conservation studies,” Opt. Lett.33(3), 240–242 (2008). [CrossRef] [PubMed]
  12. G. Filippidis, K. Melessanaki, and C. Fotakis, “Second and third harmonic generation measurements of glues used for lining textile supports of painted artworks,” Anal. Bioanal. Chem.395(7), 2161–2166 (2009). [CrossRef] [PubMed]
  13. P. Samineni, A. deCruz, T. E. Villafaña, W. S. Warren, and M. C. Fischer, “Pump-probe imaging of historical pigments used in paintings,” Opt. Lett.37(8), 1310–1312 (2012). [CrossRef] [PubMed]
  14. G. Latour, I. Gusachenko, L. Kowalczuk, I. Lamarre, and M. C. Schanne-Klein, “In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy,” Biomed. Opt. Express3(1), 1–15 (2012). [CrossRef] [PubMed]
  15. G. Cox, N. Moreno, and J. Feijó, “Second-harmonic imaging of plant polysaccharides,” J. Biomed. Opt.10(2), 024013 (2005). [CrossRef] [PubMed]
  16. R. M. Brown, A. C. Millard, and P. J. Campagnola, “Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy,” Opt. Lett.28(22), 2207–2209 (2003). [CrossRef] [PubMed]
  17. I. Vazquez-Cooz and R. W. Meyer, “Fundamental differences between two fiber types in Acer,” IAWA J.29, 129–141 (2008).
  18. D. Débarre, N. Olivier, and E. Beaurepaire, “Signal epidetection in third-harmonic generation microscopy of turbid media,” Opt. Express15(14), 8913–8924 (2007). [CrossRef] [PubMed]
  19. Y. Marubashi, T. Higashi, S. Hirakawa, S. Tani, T. Erata, P. Takai, and J. Kawamata, “Second harmonic generation measurements for biomacromolecules: celluloses,” Opt. Rev.11(6), 385–387 (2004). [CrossRef]
  20. J. Hafren, D. Muhic, H. C. Gerritsen, and A. N. Bader, “Two-photon autofluorescence spectral imaging applied to probe process-effects in thermomechanical pulp refining,” Nordic Pulp Paper Res. J.26(04), 3372–3379 (2011). [CrossRef]
  21. Y. Zeng, B. Saar, M. Friedrich, F. Chen, Y.-S. Liu, R. Dixon, M. Himmel, X. Xie, and S.-Y. Ding, “Imaging lignin-downregulated alfalfa using coherent anti-Stokes Raman scattering microscopy,” BioEnergy Res.3(3), 272–277 (2010). [CrossRef]
  22. B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B114(50), 16871–16880 (2010). [CrossRef] [PubMed]
  23. O. Nadiarnykh, R. B. Lacomb, P. J. Campagnola, and W. A. Mohler, “Coherent and incoherent SHG in fibrillar cellulose matrices,” Opt. Express15(6), 3348–3360 (2007). [CrossRef] [PubMed]
  24. I. Gusachenko, V. Tran, Y. G. Houssen, J.-M. Allain, and M.-C. Schanne-Klein, “Polarization-resolved second-harmonic generation in tendon upon mechanical stretching,” Biophys. J.102(9), 2220–2229 (2012). [CrossRef] [PubMed]
  25. R. Hori, M. Müller, U. Watanabe, H. C. Lichtenegger, P. Fratzl, and J. Sugiyama, “The importance of seasonal differences in the cellulose microfibril angle in softwoods in determining acoustic properties,” J. Mater. Sci.37(20), 4279–4284 (2002). [CrossRef]
  26. S. J. Eichhorn, R. J. Young, and G. R. Davies, “Modeling crystal and molecular deformation in regenerated cellulose fibers,” Biomacromolecules6(1), 507–513 (2005). [CrossRef] [PubMed]
  27. R. W. Boyd, Nonlinear Optics, third edition (Elsevier, 2008).
  28. E. Martin, N. Sonoda, and A. R. Duval, “Contribution à l’étude des préparations blanches des tableaux italiens sur bois,” Stud. Conserv.37(2), 82–92 (1992). [CrossRef]
  29. M.-J. Benquerença, N. F. C. Mendes, E. Castellucci, V. M. F. Gaspar, and F. P. S. C. Gil, “Micro-Raman spectroscopy analysis of 16th century Portuguese Ferreirim Masters oil paintings,” J. Raman Spectrosc.40, 2135–2143 (2009). [CrossRef]
  30. F. Rosi, A. Daveri, B. Doherty, S. Nazzareni, B. G. Brunetti, A. Sgamellotti, and C. Miliani, “On the use of overtone and combination bands for the analysis of the CaSO4-H2O system by mid-infrared reflection spectroscopy,” Appl. Spectrosc.64(8), 956–963 (2010). [CrossRef] [PubMed]
  31. A.-M. Bakr, T. Kawiak, M. Pawlikowski, and Z. Sawlowicz, “Characterisation of 15th century red and black pastes used for wall decoration in the Qijmas El-Eshaqi mosque (Cairo, Egypt)” J. Cult. Herit.6(4), 351–356 (2005). [CrossRef]
  32. A. Claro, M. J. Melo, S. Schäfer, J. S. S. de Melo, F. Pina, K. J. van den Berg, and A. Burnstock, “The use of microspectrofluorimetry for the characterization of lake pigments,” Talanta74(4), 922–929 (2008). [CrossRef] [PubMed]
  33. A. Nevin, D. Anglos, S. Cather, and A. Burnstock, “The influence of visible light and inorganic pigments on fluorescence excitation emission spectra of egg-, casein- and collagen-based painting media,” Appl. Phys. A Mater. Sci. Process.92(1), 69–76 (2008). [CrossRef]
  34. M. Thoury, J.-P. Echard, M. Réfrégiers, B. Berrie, A. Nevin, F. Jamme, and L. Bertrand, “Synchrotron UV-visible multispectral luminescence microimaging of historical samples,” Anal. Chem.83(5), 1737–1745 (2011). [CrossRef] [PubMed]
  35. J. Kirby and R. White, “The identification of red lake pigment dyestuffs and a discussion of their use,” The National Gallery Technical Bulletin17, 56–80 (1996).
  36. J.-P. Echard, L. Bertrand, A. von Bohlen, A.-S. Le Hô, C. Paris, L. Bellot-Gurlet, B. Soulier, A. Lattuati-Derieux, S. Thao, L. Robinet, B. Lavédrine, and S. Vaiedelich, “The nature of the extraordinary finish of Stradivari’s instruments,” Angew. Chem. Int. Ed. Engl.49(1), 197–201 (2010). [CrossRef] [PubMed]
  37. C. Clementi, B. Doherty, P. Gentili, C. Miliani, A. Romani, B. G. Brunetti, and A. Sgamellotti, “Vibrational and electronic properties of painting lakes,” Appl. Phys., A Mater. Sci. Process.92(1), 25–33 (2008). [CrossRef]
  38. M. Thoury, M. Elias, J. M. Frigerio, and C. Barthou, “Nondestructive varnish identification by ultraviolet fluorescence spectroscopy,” Appl. Spectrosc.61(12), 1275–1282 (2007). [CrossRef] [PubMed]
  39. A. Nevin, J.-P. Echard, M. Thoury, D. Comelli, G. Valentini, and R. Cubeddu, “Excitation emission and time-resolved fluorescence spectroscopy of selected varnishes used in historical musical instruments,” Talanta80(1), 286–293 (2009). [CrossRef] [PubMed]
  40. A. Pena, M. Strupler, T. Boulesteix, and M. Schanne-Klein, “Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy,” Opt. Express13(16), 6268–6274 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2800 KB)     
» Media 2: AVI (1716 KB)     
» Media 3: AVI (3326 KB)     
» Media 4: AVI (2544 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited