OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24664–24677

Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities

Bao-Cang Ren, Hai-Rui Wei, Ming Hua, Tao Li, and Fu-Guo Deng  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24664-24677 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1970 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bell-state analysis (BSA) is essential in quantum communication, but it is impossible to distinguish unambiguously the four Bell states in the polarization degree of freedom (DOF) of two-photon systems with only linear optical elements, except for the case in which the BSA is assisted with hyperentangled states, the simultaneous entanglement in more than one DOF. Here, we propose a scheme to distinguish completely the 16 hyperentangled Bell states in both the polarization and the spatial-mode DOFs of two-photon systems, by using the giant nonlinear optics in quantum dot-cavity systems. This scheme can be applied to increase the channel capacity of long-distance quantum communication based on hyperentanglement, such as entanglement swapping, teleportation, and superdense coding. We use hyperentanglement swapping as an example to show the application of this HBSA.

© 2012 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5580) Quantum optics : Quantum electrodynamics
(270.5565) Quantum optics : Quantum communications
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Quantum Optics

Original Manuscript: June 28, 2012
Revised Manuscript: September 8, 2012
Manuscript Accepted: September 24, 2012
Published: October 12, 2012

Bao-Cang Ren, Hai-Rui Wei, Ming Hua, Tao Li, and Fu-Guo Deng, "Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities," Opt. Express 20, 24664-24677 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67, 661–663 (1991). [CrossRef] [PubMed]
  2. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett.68, 557–559 (1992). [CrossRef] [PubMed]
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002). [CrossRef]
  4. G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A65, 032302 (2002). [CrossRef]
  5. F. G. Deng and G. L. Long, “Controlled order rearrangement encryption for quantum key distribution,” Phys. Rev. A68, 042315 (2003). [CrossRef]
  6. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Enstein-Podolsky-Rosen states,” Phys. Rev. Lett.69, 2881–2884 (1992). [CrossRef] [PubMed]
  7. X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for superdense coding between multiparties,” Phys. Rev. A65, 022304 (2002). [CrossRef]
  8. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett.70, 1895–1899 (1993). [CrossRef] [PubMed]
  9. M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “‘Event-ready-detectors’ Bell experiment via entanglement swapping,” Phys. Rev. Lett.71, 4287–4290 (1993). [CrossRef] [PubMed]
  10. L. Vaidman and N. Yoran, “Methods for reliable teleportation,” Phys. Rev. A59, 116–125 (1999). [CrossRef]
  11. N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A59, 3295–3300 (1999). [CrossRef]
  12. J. Calsamiglia, “Generalized measurements by linear elements,” Phys. Rev. A65, 030301(R) (2002). [CrossRef]
  13. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett.76, 4656–4659 (1996). [CrossRef] [PubMed]
  14. J. A. W. van Houwelingen, N. Brunner, A. Beveratos, H. Zbinden, and N. Gisin, “Quantum teleportation with a three-Bell-state analyzer,” Phys. Rev. Lett.96, 130502 (2006). [CrossRef] [PubMed]
  15. R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communications: quantum teleportation across the danube,” Nature (London)430, 849 (2004). [CrossRef]
  16. Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett.61, 50–53 (1988). [CrossRef] [PubMed]
  17. Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett.61, 2921–2924 (1988). [CrossRef] [PubMed]
  18. J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett.64, 2495–2498 (1990). [CrossRef] [PubMed]
  19. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature (London)412, 313–316 (2001). [CrossRef]
  20. N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett.93, 053601 (2004). [CrossRef] [PubMed]
  21. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett.62, 2205–2208 (1989). [CrossRef] [PubMed]
  22. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett.82, 2594–2597 (1999). [CrossRef]
  23. D. V. Strekalov, T. B. Pittman, A. V. Sergienko, and Y. H. Shih, “Postselection-free energy-time entanglement,” Phys. Rev. A54, R1–R4 (1996). [CrossRef] [PubMed]
  24. T. Yang, Q. Zhang, J. Zhang, J. Yin, Z. Zhao, M. Żukowski, Z. B. Chen, and J. W. Pan, “All-versus-nothing violation of local realism by two-photon, four-dimensional entanglement,” Phys. Rev. Lett.95, 240406 (2005) [CrossRef] [PubMed]
  25. C. Cinelli, M. Barbieri, R. Perris, P. Mataloni, and F. De Martini, “All-versus-nothing nonlocality test of quantum mechanics by two-photon hyperentanglement,” Phys. Rev. Lett.95, 240405 (2005). [CrossRef] [PubMed]
  26. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett.95, 260501 (2005). [CrossRef]
  27. M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A72, 052110 (2005). [CrossRef]
  28. G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A79, 030301(R) (2009). [CrossRef]
  29. P. G. Kwiat and H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A58, R2623–R2626 (1998). [CrossRef]
  30. S. P. Walborn, S. Ṕadua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A68, 042313 (2003). [CrossRef]
  31. C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett.96, 190501 (2006). [CrossRef] [PubMed]
  32. M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A75, 042317 (2007). [CrossRef]
  33. J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nature Phys.4, 282–286 (2008). [CrossRef]
  34. C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett.89, 257901 (2002). [CrossRef] [PubMed]
  35. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A77, 042308 (2008). [CrossRef]
  36. Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A81, 032307 (2010). [CrossRef]
  37. Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A82, 044305 (2010). [CrossRef]
  38. X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A82, 044304 (2010). [CrossRef]
  39. F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A83, 062316 (2011). [CrossRef]
  40. Y. B. Sheng and F. G. Deng, “Efficient quantum entanglement distribution over an arbitrary collective-noise channel,” Phys. Rev. A81, 042332 (2010). [CrossRef]
  41. T. C. Wei, J. T. Barreiro, and P. G. Kwiat, “Hyperentangled Bell-state analysis,” Phys. Rev. A75, 060305(R) (2007). [CrossRef]
  42. N. Pisenti, C. P. E. Gaebler, and T. W. Lynn, “Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement,” Phys. Rev. A84, 022340 (2011). [CrossRef]
  43. Y. B. Sheng, F. G. Deng, and G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A82, 032318 (2010). [CrossRef]
  44. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.79, 135–174 (2007). [CrossRef]
  45. J. H. Shapiro, “Single-photon Kerr nonlinearities do not help quantum computation,” Phys. Rev. A73, 062305 (2006). [CrossRef]
  46. J. Gea-Banacloche, “Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets,” Phys. Rev. A81, 043823 (2010). [CrossRef]
  47. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B78, 085307 (2008). [CrossRef]
  48. C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B78, 125318 (2008). [CrossRef]
  49. C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett.104, 160503 (2010). [CrossRef] [PubMed]
  50. C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B83, 115303 (2011). [CrossRef]
  51. R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, and P. M. Petroff, “Charged excitons in self-assembled semiconductor quantum dots,” Phys. Rev. Lett.79, 5282–5285 (1997). [CrossRef]
  52. C. Y. Hu, W. Ossau, D. R. Yakovlev, G. Landwehr, T. Wojtowicz, G. Karczewski, and J. Kossut, “Optically detected magnetic resonance of excess electrons in type-I quantum wells with a low-density electron gas,” Phys. Rev. B58, R1766–R1769 (1998). [CrossRef]
  53. D. F. Walls and G. J. Milburn, Quantum OpticsSpringer-Verlag, Berlin, (1994).
  54. A. B. Young, R. Oulton, C. Y. Hu, A. C. T. Thijssen, C. Schneider, S. Reitzenstein, M. Kamp, S. Höfling, L. Worschech, A. Forchel, and J. G. Rarity, “Quantum-dot-induced phase shift in a pillar microcavity,” Phys. Rev. A84, 011803 (2011). [CrossRef]
  55. G. Bester, S. Nair, and A. Zunger, “Pseudopotential calculation of the excitonic fine structure of million-atom self-assembled In1−xGaxAs/GaAs quantum dots,” Phys. Rev. B67, 161306 (R) (2003). [CrossRef]
  56. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B65, 195315 (2002).
  57. J. J. Finley, D. J. Mowbray, M. S. Skolnick, A. D. Ashmore, C. Baker, A. F. G. Monte, and M. Hopkinson, “Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots,” Phys. Rev. B66, 153316 (2002). [CrossRef]
  58. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett.87, 157401 (2001). [CrossRef] [PubMed]
  59. D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett.87, 227401 (2001). [CrossRef] [PubMed]
  60. W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B70, 033301 (2004). [CrossRef]
  61. D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B76, 241306(R) (2007). [CrossRef]
  62. B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature (London)451, 441–444 (2008). [CrossRef]
  63. D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science325, 70–72 (2009). [CrossRef] [PubMed]
  64. J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature (London)432, 197–200 (2004). [CrossRef]
  65. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London)432, 200–203 (2004). [CrossRef]
  66. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett.90, 251109 (2007). [CrossRef]
  67. V. Loo, L. Lanco, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett.97, 241110 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited