OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24686–24698

Fisher information as a generalized measure of coherence in classical and quantum optics

Alfredo Luis  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24686-24698 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (784 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that metrological resolution in the detection of small phase shifts provides a suitable generalization of the degrees of coherence and polarization. Resolution is estimated via Fisher information. Besides the standard two-beam Gaussian case, this approach provides also good results for multiple field components and nonGaussian statistics. This works equally well in quantum and classical optics.

© 2012 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization
(270.5290) Quantum optics : Photon statistics

ToC Category:
Coherence and Statistical Optics

Original Manuscript: July 16, 2012
Revised Manuscript: October 7, 2012
Manuscript Accepted: October 7, 2012
Published: October 12, 2012

Alfredo Luis, "Fisher information as a generalized measure of coherence in classical and quantum optics," Opt. Express 20, 24686-24698 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  2. J. W. Goodman, Statistical Optics (John Wiley and Sons Inc., 1985).
  3. B. Karczewski, “Degree of coherence of the electromagnetic field,” Phys. Lett. 5, 191–192 (1963). [CrossRef]
  4. H. M. Ozaktas, S. Yüksel, and M. A. Kutay, “Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence,” J. Opt. Soc. Am. A 19, 1563–1571 (2002). [CrossRef]
  5. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312, 263–267 (2003). [CrossRef]
  6. J. Tervo, T. Setälä, and A. T. Friberg, “Degree of coherence for electromagnetic fields” Opt. Express 11, 1137–1143 (2003). [CrossRef] [PubMed]
  7. T. Setälä, J. Tervo, and A. T. Friberg, “Complete electromagnetic coherence in the space-frequency domain,” Opt. Lett. 29, 328–330 (2004). [CrossRef] [PubMed]
  8. E. Wolf, “Comment on Complete electromagnetic coherence in the space-frequency domain,” Opt. Lett. 29, 1712–1712 (2004). [CrossRef] [PubMed]
  9. T. Setälä, J. Tervo, and A. T. Friberg, “Reply to comment on Complete electromagnetic coherence in the space-frequency domain,” Opt. Lett. 29, 1713–1714 (2004). [CrossRef]
  10. P. Réfrégier and F. Goudail, “Invariant degrees of coherence of partially polarized light,” Opt. Express 13, 6051–6060 (2005). [CrossRef] [PubMed]
  11. F. Gori, M. Santarsiero, and R. Borghi, “Maximizing Young’s fringe visibility through reversible optical transformations,” Opt. Lett. 32, 588–590 (2007). [CrossRef] [PubMed]
  12. R. Martínez-Herrero and P.M. Mejías, “Maximum visibility under unitary transformations in two-pinhole interference for electromagnetic fields,” Opt. Lett. 32, 1471–1473 (2007). [CrossRef] [PubMed]
  13. A. Luis, “Degree of coherence for vectorial electromagnetic fields as the distance between correlation matrices,” J. Opt. Soc. Am. A 24, 1063–1068 (2007). [CrossRef]
  14. A. Luis, “Maximum visibility in interferometers illuminated by vectorial waves,” Opt. Lett. 32, 2191–2193 (2007). [CrossRef] [PubMed]
  15. J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J. Appl. Phys. 40, 1–47 (2007). [CrossRef]
  16. I. San José and J. J. Gil, “Invariant indices of polarimetric purity. Generalized indices of purity for nxn covariance matrices,” arXiv:0807.2171v1 [physics.optics].
  17. P. Réfrégier, “Mean-square coherent light,” Opt. Lett. 33, 1551–1553 (2008). [CrossRef] [PubMed]
  18. A. Luis, “Quantum-classical correspondence for visibility, coherence, and relative phase for multidimensional systems,” Phys. Rev. A 78, 025802 (2008). [CrossRef]
  19. P. Réfrégier and A. Luis, “Irreversible effects of random unitary transformations on coherence properties of partially polarized electromagnetic fields,” J. Opt. Soc. Am. A 25, 2749–2757 (2008). [CrossRef]
  20. R. Martínez-Herrero and P.M. Mejías, “Maximizing Youngs fringe visibility under unitary transformations for mean-square coherent light,” Opt. Express 17, 603–610 (2009). [CrossRef] [PubMed]
  21. A. Luis, “Coherence and visibility for vectorial light,” J. Opt. Soc. A 27, 1764–1769 (2010). [CrossRef]
  22. A. Luis, “Coherence versus interferometric resolution,” Phys. Rev. A 81, 065802 (2010). [CrossRef]
  23. A. Luis, “An overview of coherence and polarization properties for multicomponent electromagnetic waves,” in Advances in Information Optics and Photonics, International Commission for Optics, vol. VI, A. T. Friberg and R. Dändliker, eds. (SPIE, 2009) pp. 171–188.
  24. J. Tervo, T. Setälä, and A. T. Friberg, “Phase correlations and optical coherence,” Opt. Lett. 37, 151–153 (2012). [CrossRef] [PubMed]
  25. A. Luis, “Degree of polarization in quantum optics,” Phys. Rev. A 66, 013806 (2002). [CrossRef]
  26. A. Luis, “Degree of polarization of type-II unpolarized light,” Phys. Rev. A 75, 053806 (2007) [CrossRef]
  27. A. Luis, “Polarization distributions and degree of polarization for quantum Gaussian light fields,” Opt. Commun. 273, 173–181 (2007). [CrossRef]
  28. A. Luis, “Ensemble approach to coherence between two scalar harmonic light vibrations and the phase difference,” Phys. Rev. A 79, 053855 (2009). [CrossRef]
  29. A. Picozzi, “Entropy and degree of polarization for nonlinear optical waves,” Opt. Lett. 29, 1653–1655 (2004). [CrossRef] [PubMed]
  30. P. Réfrégier, “Polarization degree of optical waves with non-Gaussian probability density functions: Kullback relative entropy-based approach,” Opt. Lett. 30, 1090–1092 (2005). [CrossRef] [PubMed]
  31. P. Réfrégier and F. Goudail, “Kullback relative entropy and characterization of partially polarized optical waves,” J. Opt. Soc. A 23, 671–678 (2006). [CrossRef]
  32. A. Rivas and A. Luis, “Characterization of quantum angular-momentum fluctuations via principal components,” Phys. Rev. A 77, 022105 (2008). [CrossRef]
  33. A. Luis, “Quantum-limited metrology with nonlinear detection schemes,” SPIE Reviews 1, 018006 (2010).
  34. H. Cramér, Mathematical Methods of Statistics (Asia Publishing House, 1962).
  35. S. L. Braunstein and C. M. Caves, “Statistical distance and the geometry of quantum states,” Phys. Rev. Lett. 72, 3439–3443 (1994). [CrossRef] [PubMed]
  36. Exploratory Data Analysis Using Fisher Information, B. R. Frieden, ed. (Springer-Verlag, 2007). [CrossRef]
  37. B. R. Frieden, Physics from Fisher information: A Unification, (Cambridge U. Press, 1999).
  38. A. Luis and L. L. Sánchez-Soto, “A quantum description of the beam splitter,” Quantum Semiclass. Opt. 7, 153–160 (1995). [CrossRef]
  39. T. M. Cover and J. A. Thomas, Elements of Information Theory, (Wiley Interscience, 1991). [CrossRef]
  40. A. D. C. Nascimento, R. J. Cintra, and A. C. Frery, “Hypothesis testing in speckled data with stochastic distances,” IEEE Trans. Geos. Remot. Sens. 48, 373–385 (2010). [CrossRef]
  41. F. Goudail, P. Réfrégier, and G. Delyon, “Bhattacharyya distance as a contrast parameter for statistical processing of noisy optical images,” J. Opt. Soc. Am. A 21, 1231–1240 (2004). [CrossRef]
  42. G. Björk, J. Soderholm, L. L. Sánchez-Soto, A. B. Klimov, I. Ghiu, P. Marian, and T. A. Marian, “Quantum degrees of polarization,” Opt. Commun. 283, 4440–4447 (2010). [CrossRef]
  43. P. Réfrégier, “Mutual information-based degrees of coherence of partially polarized light with Gaussian fluctuations,” Opt. Lett. 30, 3117–3119 (2005). [CrossRef] [PubMed]
  44. P. Réfrégier and A. Roueff, “Visibility interference fringes optimization on a single beam in the case of partially polarized and partially coherent light,” Opt. Lett. 32, 1366–1368 (2007). [CrossRef] [PubMed]
  45. I. Afek, O. Ambar, and Y. Silberberg, “High-NOON states by mixing quantum and classical light,” Science 328, 879–881 (2010). [CrossRef] [PubMed]
  46. H.-W. Lee, “Theory and application of the quantum phase-space distribution functions,” Phys. Rep. 259, 147–211 (1995). [CrossRef]
  47. C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693–1708 (1981). [CrossRef]
  48. A. Rivas and A. Luis, “Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes,” Phys. Rev. Lett. 105, 010403 (2010). [CrossRef] [PubMed]
  49. Z. Y. Ou, “Fundamental quantum limit in precision phase measurement,” Phys. Rev. A 55, 2598–2609 (1997). [CrossRef]
  50. A. Luis and L. L. Sánchez-Soto, “Quantum phase difference, phase measurements and Stokes operators,” in Progress in Optics, vol. 41, E. Wolf, ed. (Elsevier, Amsterdam, 2000), pp. 421–482. [CrossRef]
  51. A. Luis, “Visibility for anharmonic fringes,” J. Phys. A: Math. Gen. 35, 8805–8815 (2002). [CrossRef]
  52. A. Sehat, J. Söderholm, G. Björk, P. Espinoza, A. B. Klimov, and L. L. Sánchez-Soto, “Quantum polarization properties of two-mode energy eigenstates,” Phys. Rev. A 71, 033818 (2005). [CrossRef]
  53. R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Gaussian-Wigner distributions in quantum mechanics and optics,” Phys. Rev. A 36, 3868–3880 (1987). [CrossRef] [PubMed]
  54. A. Luis, “Quantum mechanics as a geometric phase: phase-space interferometers,” J. Phys. A 34, 7677–7684 (2001). [CrossRef]
  55. A. Luis, “Classical mechanics and the propagation of the discontinuities of the quantum wave function,” Phys. Rev. A 67, 024102 (2003). [CrossRef]
  56. B. N. Simon, S. Simon, F. Gori, M. Santarsiero, R. Borghi, N. Mukunda, and R. Simon, “Nonquantum entanglement resolves a basic issue in polarization optics,” Phys. Rev. Lett. 104, 023901 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited