OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24714–24726

H1 photonic crystal cavities for hybrid quantum information protocols

Jenna Hagemeier, Cristian Bonato, Tuan-Anh Truong, Hyochul Kim, Gareth J. Beirne, Morten Bakker, Martin P. van Exter, Yunqiu Luo, Pierre Petroff, and Dirk Bouwmeester  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24714-24726 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1823 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Hybrid quantum information protocols are based on local qubits, such as trapped atoms, NV centers, and quantum dots, coupled to photons. The coupling is achieved through optical cavities. Here we demonstrate far-field optimized H1 photonic crystal membrane cavities combined with an additional back reflection mirror below the membrane that meet the optical requirements for implementing hybrid quantum information protocols. Using numerical optimization we find that 80% of the light can be radiated within an objective numerical aperture of 0.8, and the coupling to a single-mode fiber can be as high as 92%. We experimentally prove the unique external mode matching properties by resonant reflection spectroscopy with a cavity mode visibility above 50%.

© 2012 OSA

OCIS Codes
(230.5298) Optical devices : Photonic crystals
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Photonic Crystals

Original Manuscript: July 18, 2012
Revised Manuscript: September 25, 2012
Manuscript Accepted: October 3, 2012
Published: October 15, 2012

Jenna Hagemeier, Cristian Bonato, Tuan-Anh Truong, Hyochul Kim, Gareth J. Beirne, Morten Bakker, Martin P. van Exter, Yunqiu Luo, Pierre Petroff, and Dirk Bouwmeester, "H1 photonic crystal cavities for hybrid quantum information protocols," Opt. Express 20, 24714-24726 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Vahala, “Optical microcavities,” Nature424, 839 (2003). [CrossRef] [PubMed]
  2. B. Lounis and M. Orrit, “Single-photon sources,” Nature Photonics, vol. 1, p. 704, 2007. [CrossRef]
  3. S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Rep. Prog. Phys., vol. 68, p. 1129, 2005. [CrossRef]
  4. S. Reitzenstein and A. Forchel, “Quantum dot micropillars,” Journal of Physics D: Applied Physics, vol. 43, p. 033001, 2010. [CrossRef]
  5. M. Larqué, T. Karle, I. Robert-Philip, and A. Beveratos, “Optimizing H1 cavities for the generation of entangled photon pairs,” New Journal of Physics, vol. 11, p. 033022, 2009. [CrossRef]
  6. P. K. Pathak and S. Hughes, “Cavity-assisted fast generation of entangled photon pairs through the biexiton-exiton cascade,” Physical Review B, vol. 80, p. 155325, 2009. [CrossRef]
  7. S. M. de Vasconcellos, A. Calvar, A. Dousse, J. Suffczyński, N. Dupuis, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Spatial, spectral, and polarization properties of coupled micropillar cavities,” Applied Physics Letters, vol. 99, p. 101103, 2011. [CrossRef]
  8. R. Hafenbrak, S. M. Ulrich, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Triggered polarization-entangled photon pairs from a single quantum dot up to 30 k,” New Journal of Physics, vol. 9, p. 315, 2007. [CrossRef]
  9. A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature Letters, vol. 466, p. 217, 2010. [CrossRef] [PubMed]
  10. S. T. Yilmaz, P. Fallahi, and A. Imamoğlu, “Quantum-dot-spin single-photon interface,” Phys. Rev. Lett., vol. 105, p. 033601, 2010. [CrossRef] [PubMed]
  11. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B, vol. 78, p. 085307, 2008. [CrossRef]
  12. C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B, vol. 80, p. 205326, 2009. [CrossRef]
  13. C. Bonato, F. Haupt, S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Physical Review Letters, vol. 104, p. 160503, 2010. [CrossRef] [PubMed]
  14. E. Waks and J. Vučković, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Physical Review Letters, vol. 96, p. 153601, 2006. [CrossRef] [PubMed]
  15. A. Auffèves-Garnier, C. Simon, J.-M. Gérard, and J.-P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Physical Review A, vol. 75, p. 053823, 2007. [CrossRef]
  16. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature, vol. 450, p. 857, 2007. [CrossRef] [PubMed]
  17. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature, vol. 425, p. 944, 2003. [CrossRef] [PubMed]
  18. S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Physical Review B, vol. 73, p. 235117, 2006. [CrossRef]
  19. N.-V.-Q. Tran, S. Combrié, and A. D. Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Physical Review B, vol. 79, p. 041101, 2009. [CrossRef]
  20. N.-V.-Q. Tran, S. Combrié, P. Colman, T. Mei, and A. D. Rossi, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Physical Review B, vol. 82, p. 075120, 2010. [CrossRef]
  21. S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Optics Express, vol. 18, p. 16064, 2010. [CrossRef] [PubMed]
  22. D. Pinotsi, J. M. Sanchez, P. Fallahi, A. Badalato, and A. Imamog̃lu, “Charge controlled self-assembled quantum dots couple to photonic crystal nanocavities,” Photon. Nanostruct.: Fundam. Appl., p. doi:, 2011. [CrossRef]
  23. M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” Journal of Applied Physics, vol. 101, p. 073107, 2007. [CrossRef] [PubMed]
  24. K. Hennessy, C. Högerle, E. Hu, A. Badalato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Applied Physics Letters, vol. 89, p. 041118, 2006. [CrossRef]
  25. I. J. Luxmoore, E. D. Ahmadi, B. J. Luxmoore, N. A. Wasley, A. I. Tartakovskii, M. Hugues, M. S. Skolnick, and A. M. Fox, “Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning,” Applied Physics Letters, vol. 100, p. 121116, 2012. [CrossRef]
  26. S.-H. Kim and Y.-H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE Journal of Quantum Electronics, vol. 39, p. 1081, 2003. [CrossRef]
  27. Lumerical Solutions, Inc. [CrossRef]
  28. J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE Journal of Quantum Electronics, vol. 38, p. 850, 2002.
  29. M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots,” Physical Review Letters, vol. 102, p. 097403, 2009. [CrossRef]
  30. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A, vol. 20, p. 569, 2003. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited