OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24735–24740

Micro-fabrication by laser radiation forces: A direct route to reversible free-standing three-dimensional structures

Loukas Athanasekos, Miltiadis Vasileiadis, Christos Mantzaridis, Vagelis C. Karoutsos, Ioannis Koutselas, Stergios Pispas, and Nikolaos A. Vainos  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24735-24740 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1721 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The origins and first demonstration of structurally stable solids formed by use of radiation forces are presented. By experimentally proving that radiation forces can indeed produce stable solid material forms, a novel method enabling two- and three-dimensional (2d and 3d) microfabrication is introduced: An optical, non-contact single-step physical operation, reversible with respect to materials nature, based on the sole use of radiation forces. The present innovation is elucidated by the formation of polyisoprene and polybutadiene micro-solids, as well as plasmonic and fluorescent hybrids, respectively comprising Au nanoparticles and CdS quantum dots, together with novel concepts of polymeric fiber-drawing by radiation forces.

© 2012 OSA

OCIS Codes
(160.5470) Materials : Polymers
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(230.4000) Optical devices : Microstructure fabrication
(350.3390) Other areas of optics : Laser materials processing
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Laser Microfabrication

Original Manuscript: August 21, 2012
Revised Manuscript: October 5, 2012
Manuscript Accepted: October 5, 2012
Published: October 15, 2012

Loukas Athanasekos, Miltiadis Vasileiadis, Christos Mantzaridis, Vagelis C. Karoutsos, Ioannis Koutselas, Stergios Pispas, and Nikolaos A. Vainos, "Micro-fabrication by laser radiation forces: A direct route to reversible free-standing three-dimensional structures," Opt. Express 20, 24735-24740 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Maxwell, A treatise on electricity and magnetism (Oxford Clarendon Press, 1873).
  2. E. F. Nichols and G. F. Hull, “The pressure due to radiation,” Phys. Rev.17(1), 26–50 (1903). [CrossRef]
  3. A. Ashkin, “Acceleration and trapping of particles by radiation forces,” Phys. Rev. Lett.24(4), 156–159 (1970). [CrossRef]
  4. H. Friedmann and A. Wilson, “Isotope separation by radiation pressure of coherent pi-pulses,” Appl. Phys. Lett.28(5), 270–272 (1976). [CrossRef]
  5. V. S. Letokhov, V. G. Minogin, and B. D. Pavlik, “Cooling and trapping atoms and molecules by a resonant laser field,” Opt. Commun.19(1), 72–75 (1976). [CrossRef]
  6. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004). [CrossRef] [PubMed]
  7. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun.124(5-6), 529–541 (1996). [CrossRef]
  8. T. A. Nieminen, G. Knöner, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Physics of optical tweezers,” Methods Cell Biol.82, 207–236 (2007). [CrossRef] [PubMed]
  9. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J.61(2), 569–582 (1992). [CrossRef] [PubMed]
  10. A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis29(24), 4813–4851 (2008). [CrossRef] [PubMed]
  11. D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt.15(4), 041503 (2010). [CrossRef] [PubMed]
  12. D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics4(4), 211–217 (2010). [CrossRef]
  13. K. Dholakia and W. M. Lee, “Optical trapping takes shape: the use of structured light fields,” Adv. At. Mol. Opt. Phys.56, 261–337 (2008). [CrossRef]
  14. K. Dholakia and P. Zemanek, “Gripped by light: optical binding,” Rev. Mod. Phys.82(2), 1767–1791 (2010). [CrossRef]
  15. T. Cizmar, L. C. Davila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. At. Mol. Opt. Phys.43(10), 102001 (2010). [CrossRef]
  16. R. Sigel, G. Fytas, N. Vainos, S. Pispas, and N. Hadjichristidis, “Pattern formation in homogeneous polymer solutions induced by a continuous-wave visible laser,” Science297(5578), 67–70 (2002). [CrossRef] [PubMed]
  17. B. Loppinet, E. Somma, N. Vainos, and G. Fytas, “reversible holographic grating formation in polymer solutions,” J. Am. Chem. Soc.127(27), 9678–9679 (2005). [CrossRef] [PubMed]
  18. M. Anyfantakis, B. Loppinet, G. Fytas, and S. Pispas, “Optical spatial solitons and modulation instabilities in transparent entangled polymer solutions,” Opt. Lett.33(23), 2839–2841 (2008). [CrossRef] [PubMed]
  19. M. Anyfantakis, G. Fytas, C. Mantzaridis, S. Pispas, H. J. Butt, and B. Loppinet, “Experimental investigation of long time irradiation in polydienes solutions: reversibility and instabilities,” J. Opt.12(12), 124013 (2010). [CrossRef]
  20. M. Doi and S. F. Edwards, The theory of polymer dynamics (Oxford Univ. Press, 1986).
  21. P. G. De Gennes, Introduction to polymer dynamics (Cambridge Univ. Press, 1990).
  22. E. Raspaud, D. Lairez, and M. Adam, “On the number of blobs per entanglement in semidilute and good solvent solution: melt influence,” Macromolecules28(4), 927–933 (1995). [CrossRef]
  23. L. J. Fetters, N. Hadjichristidis, J. S. Lindner, and J. W. Mays, “Molecular weight dependence of hydrodynamic and thermodynamic properties for well-defined linear polymers in solution,” J. Phys. Chem. Ref. Data23(4), 619–640 (1994). [CrossRef]
  24. H. Watanabe, “Viscoelasticity and dynamics of entangled polymers,” Prog. Polym. Sci.24(9), 1253–1403 (1999). [CrossRef]
  25. K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett.83(22), 4534–4537 (1999). [CrossRef]
  26. V. N. Pokrovskii, The mesoscopic theory of polymer dynamics (Springer, 2010).
  27. N. Hadjichrisitidis, H. Iatrou, S. Pispas, and M. Pitsikalis, “Anionic polymerization: high vacuum techniques,” J. Polym. Sci.38, 3211–3234 (2000).
  28. D. Uhrig and J. W. J. Mays, “Experimental techniques in high-vacuum anionic polymerization,” Polym. Sci. 43, 6179–6222 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

Supplementary Material

» Media 1: PDF (250 KB)     
» Media 2: AVI (2682 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited