OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24748–24753

Optically stitched arbitrary fan-sectors with selective polarization states for dynamic manipulation of surface plasmon polaritons

L. J. Guo, C. J. Min, G. H. Yuan, C. L. Zhang, J. G. Wang, Z. Shen, and X. -C. Yuan  »View Author Affiliations


Optics Express, Vol. 20, Issue 22, pp. 24748-24753 (2012)
http://dx.doi.org/10.1364/OE.20.024748


View Full Text Article

Enhanced HTML    Acrobat PDF (1048 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Novel hybrid-polarized vector beams with radial and azimuthal polarization states in arbitrary fan-sectors are generated and studied for manipulating surface plasmon polaritons (SPPs). The method has high energy conversion efficiency based on an interferometric arrangement with a Dammann vortex phase grating. The polarization states of generated beams are measured by a linear polarizer and show excellent agreement with theoretical predictions. The manipulation properties of the hybrid-polarized beams on SPPs excitation and distribution are demonstrated by both experiments and simulations. The results show that focusing or standing wave patterns of SPPs can be obtained depending on the polarization of the beams.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5430) Physical optics : Polarization

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 23, 2012
Revised Manuscript: September 28, 2012
Manuscript Accepted: October 7, 2012
Published: October 15, 2012

Citation
L. J. Guo, C. J. Min, G. H. Yuan, C. L. Zhang, J. G. Wang, Z. Shen, and X. -C. Yuan, "Optically stitched arbitrary fan-sectors with selective polarization states for dynamic manipulation of surface plasmon polaritons," Opt. Express 20, 24748-24753 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-22-24748


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. W. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009). [CrossRef]
  2. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001). [CrossRef] [PubMed]
  3. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-Field Second-Harmonic Generation Induced by Local Field Enhancement,” Phys. Rev. Lett.90(1), 013903 (2003). [CrossRef] [PubMed]
  4. N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett.85(25), 6239–6241 (2004). [CrossRef]
  5. B. H. Jia, X. S. Gan, and M. Gu, “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express13(18), 6821–6827 (2005). [CrossRef] [PubMed]
  6. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B15(4), 1381–1386 (1998). [CrossRef]
  7. K. J. Moh, X.-C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams,” Opt. Express16(25), 20734–20741 (2008). [CrossRef] [PubMed]
  8. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006). [CrossRef]
  9. K. J. Moh, X.-C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy,” Opt. Lett.34(7), 971–973 (2009). [CrossRef] [PubMed]
  10. X. L. Wang, J. P. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett.32(24), 3549–3551 (2007). [CrossRef] [PubMed]
  11. X. M. Gao, J. Wang, H. T. Gu, and W. D. Xu, “Focusing properties of concentric piecewise cylindrical vector beam,” Optik (Stuttg.)118(6), 257–265 (2007). [CrossRef]
  12. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams,” Opt. Commun.281(4), 732–738 (2008). [CrossRef]
  13. U. Levy, C. H. Tsai, L. Pang, and Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control,” Opt. Lett.29(15), 1718–1720 (2004). [CrossRef] [PubMed]
  14. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett.21(23), 1948–1950 (1996). [CrossRef] [PubMed]
  15. K. J. Moh, X.-C. Yuan, J. Bu, R. E. Burge, and B. Z. Gao, “Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams,” Appl. Opt.46(30), 7544–7551 (2007). [CrossRef] [PubMed]
  16. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  17. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  18. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005). [CrossRef] [PubMed]
  19. A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, “Multiplexing surface plasmon polaritons on nanowires,” Appl. Phys. Lett.91(8), 083115 (2007). [CrossRef]
  20. C. H. Zhou and L. R. Liu, “Numerical study of Dammann array illuminators,” Appl. Opt.34(26), 5961–5969 (1995). [CrossRef] [PubMed]
  21. I. Moreno, J. A. Davis, D. M. Cottrell, N. Zhang, and X.-C. Yuan, “Encoding generalized phase functions on Dammann gratings,” Opt. Lett.35(10), 1536–1538 (2010). [CrossRef] [PubMed]
  22. R. Wang, C. L. Zhang, Y. Yang, S. Z. Zhu, and X.-C. Yuan, “Focused cylindrical vector beam assisted microscopic pSPR biosensor with an ultra wide dynamic range,” Opt. Lett.37(11), 2091–2093 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited