OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24761–24768

Practical retrieval of land surface emissivity spectra in 8-14μm from hyperspectral thermal infrared data

Hua Wu, Ning Wang, Li Ni, Bo-Hui Tang, and Zhao-Liang Li  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24761-24768 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (835 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A practical physics-based regression method was developed and evaluated for nearly real time estimate of land surface emissivity spectra in 8-14μm from hyperspectral thermal infrared data. Two spectral emissivity libraries and one atmospheric profile database fully covering all the possible situations for clear sky conditions were elaborately selected to simulate the radiances at the top of the atmosphere (TOA). The regression coefficients were determined by the main principal components of emissivity spectra and those of simulated brightness temperature at TOA using a ridge regression method. The experience with the simulated Interferometer Atmospheric Sounding Instrument (IASI) data showed that the emissivity spectra could be retrieved under clear sky conditions with root mean square errors of 0.015 and 0.03 for 714-970cm−1 (10.3-14.0μm) and 970-1250cm−1 (8.0-10.3μm), respectively, for various land surface and atmospheric conditions. This indicates the proposed method may be robust and applicable for all hyperspectral infrared sensors.

© 2012 OSA

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.6170) Spectroscopy : Spectra
(300.6340) Spectroscopy : Spectroscopy, infrared
(280.4991) Remote sensing and sensors : Passive remote sensing
(290.6815) Scattering : Thermal emission

ToC Category:
Remote Sensing

Original Manuscript: September 21, 2012
Revised Manuscript: October 10, 2012
Manuscript Accepted: October 10, 2012
Published: October 15, 2012

Hua Wu, Ning Wang, Li Ni, Bo-Hui Tang, and Zhao-Liang Li, "Practical retrieval of land surface emissivity spectra in 8-14μm from hyperspectral thermal infrared data," Opt. Express 20, 24761-24768 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. R. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Rem. Sens.36(4), 1113–1126 (1998). [CrossRef]
  2. J. Li, E. Weisz, and D. K. Zhou, “Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances,” Geophys. Res. Lett.34(16), L16812 (2007). [CrossRef]
  3. B.-H. Tang, H. Wu, C. Li, and Z.-L. Li, “Estimation of broadband surface emissivity from narrowband emissivities,” Opt. Express19(1), 185–192 (2011). [CrossRef] [PubMed]
  4. Z. Wan, “MODIS land-surface temperature algorithm theoretical basis document, version 3.3” (NASA/GSFC, 1999). http://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf .
  5. A. R. Gillespie, S. Rokugawa, S. J. Hook, T. Matsunaga, and A. B. Kahle, “Temperature/emissivity separation algorithm theoretical basis document, Version 2.4” (NASA/GSFC, 1996). http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/ASTER/atbd-ast-05-08.pdf .
  6. K. Ogawa, T. Schmugge, F. Jacob, and A. French, “Estimation of land surface window (8-12μm) emissivity from multi-spectral thermal infrared remote sensing - a case study in a part of Sahara Desert,” Geophys. Res. Lett.30(2), 1067 (2003). [CrossRef]
  7. J. Li and J. L. Li, “Derivation of global hyperspectral resolution surface emissivity spectra from advanced infrared sounder radiance measurements,” Geophys. Res. Lett.35(15), L15807 (2008). [CrossRef]
  8. L. Zhou, M. Goldberg, C. Barnet, Z. Cheng, F. Sun, W. Wolf, T. King, X. Liu, H. Sun, and M. Divakarla, “Regression of surface spectral emissivity from hyperspectral instruments,” IEEE Trans. Geosci. Rem. Sens.46(2), 328–333 (2008). [CrossRef]
  9. D. K. Zhou, A. M. Larar, X. Liu, W. L. Smith, L. L. Strow, P. Yang, P. Schlüssel, and X. Calbet, “Global land surface emissivity retrieved from satellite ultraspectral IR measurements,” IEEE Trans. Geosci. Rem. Sens.49(4), 1277–1290 (2011). [CrossRef]
  10. E. Péquignot, A. Chédin, and N. A. Scott, “Infrared continental surface emissivity spectra retrieved from AIRS hyperspectral sensor,” J. Appl. Meteorol. Climatol.47(6), 1619–1633 (2008). [CrossRef]
  11. L. Chaumat, C. Standfuss, B. Tournier, R. Armante, and N. A. Scott, “4A/OP reference documentation” (NOVELTIS, 2012). http://4aop.noveltis.com/sites/4aop.noveltis.loc/files/NOV-3049-NT-1178v4.3.pdf .
  12. J. M. Galve, C. Coll, V. Caselles, and E. Valor, “An atmospheric radiosounding database for generating land surface temperature algorithms,” IEEE Trans. Geosci. Rem. Sens.46(5), 1547–1557 (2008). [CrossRef]
  13. F. Aires, W. B. Rossow, N. A. Scott, and A. Chedin, “Remote sensing from the infrared atmospheric sounding interferometer instrument. 1. compression, denoising, and first-guess retrieval algorithms,” J. Geophys. Res.107(D22), 4619 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited