OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24803–24812

Enhanced performance of Cr,Yb:YAG microchip laser by bonding Yb:YAG crystal

Ying Cheng, Jun Dong, and Yingying Ren  »View Author Affiliations


Optics Express, Vol. 20, Issue 22, pp. 24803-24812 (2012)
http://dx.doi.org/10.1364/OE.20.024803


View Full Text Article

Enhanced HTML    Acrobat PDF (867 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Highly efficient, laser-diode pumped Yb:YAG/Cr,Yb:YAG self-Q-switched microchip lasers by bonding Yb:YAG crystal have been demonstrated for the first time to our best knowledge. The effect of transmission of output coupler (Toc) on the enhanced performance of Yb:YAG/Cr,Yb:YAG microchip lasers has been investigated and found that the best laser performance was achieved with Toc = 50%. Slope efficiency of over 38% was achieved. Average output power of 0.8 W was obtained at absorbed pump power of 2.5 W; corresponding optical-to-optical efficiency of 32% was obtained. Laser pulses with pulse width of 1.68 ns, pulse energy of 12.4 μJ, and peak power of 7.4 kW were obtained. The lasers oscillated in multi-longitudinal modes. The wide separation of longitudinal modes was attributed to the mode selection by combined etalon effect of Cr,Yb:YAG, Yb:YAG thin plates and output coupler. Stable periodical pulse trains at different pump power levels have been observed owing to the longitudinal modes coupling and competition.

© 2012 OSA

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 28, 2012
Revised Manuscript: October 7, 2012
Manuscript Accepted: October 8, 2012
Published: October 15, 2012

Citation
Ying Cheng, Jun Dong, and Yingying Ren, "Enhanced performance of Cr,Yb:YAG microchip laser by bonding Yb:YAG crystal," Opt. Express 20, 24803-24812 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-22-24803


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, “An innovative solid-state laser for engine ignition,” Laser Phys. Lett.4(4), 322–327 (2007). [CrossRef]
  2. J. J. Zayhowski, “Microchip lasers,” Opt. Mater.11(2-3), 255–267 (1999). [CrossRef]
  3. J. J. Zayhowski, “Q-switched microchip lasers find real-world application,” Laser Focus World35, 129–136 (1999).
  4. P. Wang, S. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun.114(5-6), 439–441 (1995). [CrossRef]
  5. J. Dong, P. Deng, Y. Lu, Y. Zhang, Y. Liu, J. Xu, and W. Chen, “Laser-diode-pumped Cr4+, Nd3+:YAG with self-Q-switched laser output of 1.4 W,” Opt. Lett.25(15), 1101–1103 (2000). [CrossRef] [PubMed]
  6. J. Dong, P. Deng, Y. Liu, Y. Zhang, G. Huang, and F. Gan, “Performance of the self-Q-switched Cr,Yb:YAG laser,” Chin. Phys. Lett.19(3), 342–344 (2002). [CrossRef]
  7. D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett.19(17), 1343–1345 (1994). [CrossRef] [PubMed]
  8. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron.29(6), 1457–1459 (1993). [CrossRef]
  9. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 105–116 (1997). [CrossRef]
  10. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on the temperature and concentration in ytterbium aluminum garnet,” J. Opt. Soc. Am. B20(9), 1975–1979 (2003). [CrossRef]
  11. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001). [CrossRef]
  12. J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically-cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010). [CrossRef]
  13. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron.13(3), 598–609 (2007). [CrossRef]
  14. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW Thin Disc laser,” IEEE J. Sel. Top. Quantum Electron.6(4), 650–657 (2000). [CrossRef]
  15. A. G. Wang and Y. Li, L., and F. X. H., “Quasi-three-level thin-disk laser at 1024 nm based on diode-pumped Yb:YAG crystal,” Laser Phys. Lett.8, 508–511 (2011).
  16. E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, “High-power dual-rod Yb:YAG laser,” Opt. Lett.25(11), 805–807 (2000). [CrossRef] [PubMed]
  17. J. Dong, A. Shirakawa, K. Ueda, J. Xu, and P. Deng, “Efficient laser oscillation of Yb:Y3Al5O12 single crystal grown by temperature gradient technique,” Appl. Phys. Lett.88(16), 161115 (2006). [CrossRef]
  18. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006). [CrossRef]
  19. T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, “Edge-pumped quasi-three-level slab lasers: design and power scaling,” IEEE J. Quantum Electron.36(2), 205–219 (2000). [CrossRef]
  20. J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively-Q-switched Yb:YAG laser with Cr4+:YAG as a saturable absorber,” Appl. Opt.40(24), 4303–4307 (2001). [CrossRef] [PubMed]
  21. J. Dong, P. Deng, and J. Xu, “The growth of Cr4+,Yb3+:yttrium aluminum garnet(YAG) crystal and its absorption spectra properties,” J. Cryst. Growth203(1-2), 163–167 (1999). [CrossRef]
  22. J. Dong and P. Deng, “The effect of Cr concentration on emission cross section and fluorescence lifetime in Cr,Yb:YAG crystal,” J. Lumin.104(1-2), 151–158 (2003). [CrossRef]
  23. J. Dong, A. Shirakawa, S. Huang, Y. Feng, T. Takaichi, M. Musha, K. Ueda, and A. A. Kaminskii, “Stable laser-diode pumped microchip sub-nanosecond Cr,Yb:YAG self-Q-switched laser,” Laser Phys. Lett.2(8), 387–391 (2005). [CrossRef]
  24. H. Eilers, U. Hömmerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12.,” Phys. Rev. B Condens. Matter49(22), 15505–15513 (1994). [CrossRef] [PubMed]
  25. R. Feldman, Y. Shimony, and Z. Burshtein, “Dynamics of chromium ion valence transformations in Cr,Ca:YAG crystals used as laser gain and passive Q-switching media,” Opt. Mater.24(1-2), 333–344 (2003). [CrossRef]
  26. J. Y. Zhou, J. Ma, J. Dong, Y. Cheng, K. Ueda, and A. A. Kaminskii, “Efficient, nanosecond self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG crystal,” Laser Phys. Lett.8(8), 591–597 (2011). [CrossRef]
  27. J. Dong, J. Ma, Y. Cheng, Y. Y. Ren, K. Ueda, and A. A. Kaminskii, “Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal,” Laser Phys. Lett.8(12), 845–852 (2011). [CrossRef]
  28. W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1999).
  29. J. Dong and P. Deng, “Temperature dependent emission cross-section and fluorescence lifetime of Cr,Yb:YAG crystals,” J. Phys. Chem. Solids64(7), 1163–1171 (2003). [CrossRef]
  30. J. Dong, “Numerical modeling of CW-pumped repetitively passively Q-switched Yb:YAG lasers with Cr:YAG as saturable absorber,” Opt. Commun.226(1-6), 337–344 (2003). [CrossRef]
  31. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron.31(11), 1890–1901 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited