OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24813–24818

Subwavelength electromagnetic switch: Bistable wave transmission of side-coupling nonlinear meta-atom

Yaqiong Ding, Chunhua Xue, Yong Sun, Haitao Jiang, Yunhui Li, Hongqiang Li, and Hong Chen  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24813-24818 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1853 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a scheme for subwavelength electromagnetic switch by employing nonlinear meta-atom. Bistable response is conceptually demonstrated on a microwave transmission line, which is side-coupled to a varactor-loaded split ring resonator acting as a nonlinear meta-atom. Calculations and experiments show that by applying conductive coupling instead of near-field interaction between the transmission line and the nonlinear meta-atom, switch performances are improved. The switch threshold of low to −5.8 dBm and the transmission contrast of up to 4.0 dB between the two bistable states were achieved. Subwavelength size of our switch should be useful for miniaturization of integrated optical nanocircuits.

© 2012 OSA

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(230.4320) Optical devices : Nonlinear optical devices
(160.3918) Materials : Metamaterials

ToC Category:
Nonlinear Optics

Original Manuscript: August 30, 2012
Revised Manuscript: October 8, 2012
Manuscript Accepted: October 9, 2012
Published: October 15, 2012

Yaqiong Ding, Chunhua Xue, Yong Sun, Haitao Jiang, Yunhui Li, Hongqiang Li, and Hong Chen, "Subwavelength electromagnetic switch: Bistable wave transmission of side-coupling nonlinear meta-atom," Opt. Express 20, 24813-24818 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett.36(19), 1135–1138 (1976). [CrossRef]
  2. T. Bischofberger and Y. R. Shen, “Theoretical and experimental study of the dynamic behavior of a nonlinear Fabry-Perot interferrometer,” Phys. Rev. A19(3), 1169–1176 (1979). [CrossRef]
  3. H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett.35(5), 379–381 (1979). [CrossRef]
  4. S. F. Mingaleev and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-crystal waveguides,” J. Opt. Soc. Am. B19(9), 2241–2249 (2002). [CrossRef]
  5. A. M. Yacomotti, F. Raineri, G. Vecchi, P. Monnier, R. Raj, A. Levenson, B. Ben Bakir, C. Seassal, X. Letartre, P. Viktorovitch, L. Di Cioccio, and J. M. Fedeli, “All-optical bistable band-edge Bloch modes in a two-dimensional photonic crystal,” Appl. Phys. Lett.88(23), 231107 (2006). [CrossRef]
  6. M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(5), 055601 (2002). [CrossRef] [PubMed]
  7. M. F. Yanik, S. Fan, and M. Soljačić, “High-contrast all-optical bistable switching in photonic crystal microcavities,” Appl. Phys. Lett.83(14), 2739 (2003). [CrossRef]
  8. T. Ebbesen, C. Genet, and S. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008). [CrossRef]
  9. N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007). [CrossRef] [PubMed]
  10. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  11. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001). [CrossRef] [PubMed]
  12. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  13. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  14. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett.88(4), 041109 (2006). [CrossRef]
  15. A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett.91(3), 037401 (2003). [CrossRef] [PubMed]
  16. I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, “Tunable split-ring resonators for nonlinear negative-index metamaterials,” Opt. Express14(20), 9344–9349 (2006). [CrossRef] [PubMed]
  17. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express15(8), 5238–5247 (2007). [CrossRef] [PubMed]
  18. B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonlinear properties of split-ring resonators,” Opt. Express16(20), 16058–16063 (2008). [CrossRef] [PubMed]
  19. A. Rose, D. Huang, and D. R. Smith, “Controlling the second harmonic in a phase-matched negative-index metamaterial,” Phys. Rev. Lett.107(6), 063902 (2011). [CrossRef] [PubMed]
  20. E. Poutrina, D. Huang, and D. R. Smith, “Analysis of nonlinear electromagnetic metamaterials,” New J. Phys.12(9), 093010 (2010). [CrossRef]
  21. P. Gay-Balmaz and O. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys.92(5), 2929–2936 (2002). [CrossRef]
  22. T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of left-handed materials,” Phys. Rev. Lett.93(10), 107402 (2004). [CrossRef] [PubMed]
  23. Y. Fan, Z. Wei, J. Han, X. Liu, and H. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys.44(42), 425303 (2011). [CrossRef]
  24. C. Arnold, V. Loo, A. Lemaître, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, and L. Lanco, “Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000,” Appl. Phys. Lett.100(11), 111111 (2012). [CrossRef]
  25. P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited