OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24827–24834

Parallel wavefront measurements in ultrasound pulse guided digital phase conjugation

Reto Fiolka, Ke Si, and Meng Cui  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24827-24834 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1584 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ultrasound pulse guided digital phase conjugation has emerged to realize fluorescence imaging inside random scattering media. Its major limitation is the slow imaging speed, as a new wavefront needs to be measured for each voxel. Therefore 3D or even 2D imaging can be time consuming. For practical applications on biological systems, we need to accelerate the imaging process by orders of magnitude. Here we propose and experimentally demonstrate a parallel wavefront measurement scheme towards such a goal. Multiple focused ultrasound pulses of different carrier frequencies can be simultaneously launched inside a scattering medium. Heterodyne interferometry is used to measure all of the wavefronts originating from every sound focus in parallel. We use these wavefronts in sequence to rapidly excite fluorescence at all the voxels defined by the focused ultrasound pulses. In this report, we employed a commercially available sound transducer to generate two sound foci in parallel, doubled the wavefront measurement speed, and reduced the mechanical scanning steps of the sound transducer to half.

© 2012 OSA

OCIS Codes
(090.0090) Holography : Holography
(110.7050) Imaging systems : Turbid media
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(190.5040) Nonlinear optics : Phase conjugation
(110.0113) Imaging systems : Imaging through turbid media
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Imaging Systems

Original Manuscript: September 4, 2012
Revised Manuscript: October 11, 2012
Manuscript Accepted: October 11, 2012
Published: October 15, 2012

Reto Fiolka, Ke Si, and Meng Cui, "Parallel wavefront measurements in ultrasound pulse guided digital phase conjugation," Opt. Express 20, 24827-24834 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Y. Tsien, “The green fluorescent protein,” Annu. Rev. Biochem.67(1), 509–544 (1998). [CrossRef] [PubMed]
  2. B. A. Wilt, L. D. Burns, E. T. Wei Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci.32(1), 435–506 (2009). [CrossRef] [PubMed]
  3. J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109(22), 8434–8439 (2012). [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  5. P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett.28(12), 1022–1024 (2003). [CrossRef] [PubMed]
  6. P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A23(12), 3139–3149 (2006). [CrossRef] [PubMed]
  7. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  8. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  9. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  10. A. Derode, P. Roux, and M. Fink, “Robust acoustic time-reversal with high-order multiple-scattering,” Phys. Rev. Lett.75(23), 4206–4209 (1995). [CrossRef] [PubMed]
  11. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science315(5815), 1120–1122 (2007). [CrossRef] [PubMed]
  12. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007). [CrossRef] [PubMed]
  13. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101(12), 120601 (2008). [CrossRef] [PubMed]
  14. arXiv:0807.1087.
  15. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat Commun1(6), 81 (2010). [CrossRef] [PubMed]
  16. M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics6(9), 583–587 (2012). [CrossRef]
  17. M. Cui, E. J. McDowell, and C. H. Yang, “Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation,” Appl. Phys. Lett.95(12), 123702 (2009). [CrossRef] [PubMed]
  18. M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (tsopc) on rabbit ear,” Opt. Express18(1), 25–30 (2010). [CrossRef] [PubMed]
  19. M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express18(4), 3444–3455 (2010). [CrossRef] [PubMed]
  20. M. Cui, “Parallel wavefront optimization method for focusing light through random scattering media,” Opt. Lett.36(6), 870–872 (2011). [CrossRef] [PubMed]
  21. M. Cui, “A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media,” Opt. Express19(4), 2989–2995 (2011). [CrossRef] [PubMed]
  22. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011). [CrossRef]
  23. D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, and B. Chatel, “Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium,” Nat Commun2, 447 (2011). [CrossRef] [PubMed]
  24. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics2(2), 110–115 (2008). [CrossRef] [PubMed]
  25. L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: An analytic model,” Phys. Rev. Lett.87(4), 043903 (2001). [CrossRef] [PubMed]
  26. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics5(3), 154–157 (2011). [CrossRef] [PubMed]
  27. P. X. Lai, X. Xu, H. L. Liu, Y. Suzuki, and L. V. Wang, “Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media,” J. Biomed. Opt.16(8), 080505 (2011). [CrossRef] [PubMed]
  28. K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics6(10), 657–661 (2012). [CrossRef]
  29. Y. M. Wang, B. Judkewitz, C. A. Dimarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat Commun3, 928 (2012). [CrossRef] [PubMed]
  30. M. Wildenhain, J. Knobbe, A. Gehner, M. Wagner, and H. Lakner, “Ao slm demonstration system and test bed,” Proc. SPIE6467, 64670E, 64670E-10 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited