OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24843–24849

Sub-5-ps optical pulse generation from a 1.55-µm distributed-feedback laser diode with nanosecond electric pulse excitation and spectral filtering

Shaoqiang Chen, Aya Sato, Takashi Ito, Masahiro Yoshita, Hidefumi Akiyama, and Hiroyuki Yokoyama  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24843-24849 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (870 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper reports generation of sub-5-ps Fourier-transform limited optical pulses from a 1.55-µm gain-switched single-mode distributed-feedback laser diode via nanosecond electric excitation and a simple spectral-filtering technique. Typical damped oscillations of the whole lasing spectrum were observed in the time-resolved waveform. Through a spectral-filtering technique, the initial relaxation oscillation pulse and the following components in the output pulse can be well separated, and the initial short pulse can be selectively extracted by filtering out the short-wavelength components in the spectrum. Short pulses generated by this simple method are expected to have wide potential applications comparable to mode-locking lasers.

© 2012 OSA

OCIS Codes
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(320.5390) Ultrafast optics : Picosecond phenomena

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 11, 2012
Revised Manuscript: October 1, 2012
Manuscript Accepted: October 9, 2012
Published: October 16, 2012

Shaoqiang Chen, Aya Sato, Takashi Ito, Masahiro Yoshita, Hidefumi Akiyama, and Hiroyuki Yokoyama, "Sub-5-ps optical pulse generation from a 1.55-µm distributed-feedback laser diode with nanosecond electric pulse excitation and spectral filtering," Opt. Express 20, 24843-24849 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. L. Liu, C. Lin, I. Kaminow, and J. Hsieh, “Picosecond pulse generation from InGaAsP lasers at 1.25 and 1.3 µm by electrical pulse pumping,” IEEE J. Quantum Electron.17(5), 671–674 (1981). [CrossRef]
  2. Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa, “Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding,” IEEE Photon. Technol. Lett.9(8), 1087–1089 (1997). [CrossRef]
  3. H. Yokoyama, H. Guo, T. Yoda, K. Takashima, K. Sato, H. Taniguchi, and H. Ito, “Two-photon bioimaging with picosecond optical pulses from a semiconductor laser,” Opt. Express14(8), 3467–3471 (2006). [CrossRef] [PubMed]
  4. A. Sato, S. Kono, K. Saito, K. Sato, and H. Yokoyama, “A high-peak-power UV picosecond-pulse light source based on a gain-switched 1.55 microm laser diode and its application to time-resolved spectroscopy of blue-violet materials,” Opt. Express18(3), 2522–2527 (2010). [CrossRef] [PubMed]
  5. H. Yokoyama, A. Sato, H. C. Guo, K. Sato, M. Mure, and H. Tsubokawa, “Nonlinear-microscopy optical-pulse sources based on mode-locked semiconductor lasers,” Opt. Express16(22), 17752–17758 (2008). [CrossRef] [PubMed]
  6. S. W. Corzine, J. E. Bowers, G. Przybylek, U. Koren, B. I. Miller, and C. E. Soccolich, “Actively mode-locked GaInAsP laser with subpicosecond output,” Appl. Phys. Lett.52(5), 348–351 (1988). [CrossRef]
  7. D. M. Pataca, P. Gunning, M. L. Rocha, J. K. Lucek, R. Kashyap, K. Smith, D. G. Moodie, R. P. Davey, R. F. Souza, and A. S. Siddiqui, “Gain-switched DFB lasers,” J. Microwaves. Optoelectron.1, 46–63 (1997).
  8. K. A. Ahmed, B. J. Eggleton, H. F. Liu, P. A. Krug, and F. Ouellette, “Simultaneous mode selection and pulse compression of gain-switched pulses from a Fabry-Perot laser using a 40-mm chirped optical fiber grating,” IEEE Photon. Technol. Lett.7(2), 158–160 (1995). [CrossRef]
  9. L. P. Barry, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Characterization of 1.55-μm pulses from a self-seeded gain-switched Fabry-Perot laser diode using frequency-resolved optical gating,” IEEE Photon. Technol. Lett.10(7), 935–937 (1998). [CrossRef]
  10. R. Takahashi, H. F. Liu, M. Osinski, and T. Kamiya, “Picosecond single-mode pulse compression using a 1.3 μm Fabry-Perot laser diode, a dispersion-shifted fiber, a grating monochromator,” Appl. Phys. Lett.55(23), 2377–2379 (1989). [CrossRef]
  11. A. Takada, T. Sugie, and M. Saruwatari, “Transform-limited 5.6 ps optical pulse generation at 12 GHz repetition rate from gain-switched distributed feedback laser diode by employing pulse compression technique,” Electron. Lett.22(25), 1347–1348 (1986). [CrossRef]
  12. C. de Dios and H. Lamela, “Compression and reshaping of gain-switching low-quality pulses using a highly nonlinear optical loop mirror,” IEEE Photon. Technol. Lett.22(6), 377–379 (2010). [CrossRef]
  13. M. Nakazawa, K. Suzuki, and Y. Kimura, “Transform-limited pulse generation in the gigahertz region from a gain-switched distributed-feedback laser diode using spectral windowing,” Opt. Lett.15(12), 715–717 (1990). [CrossRef] [PubMed]
  14. N. Yamada and Y. Nakagawa, “Pulse shaping using spectral filtering in gain-switched quantum well laser diodes,” Appl. Phys. Lett.63(5), 583–585 (1993). [CrossRef]
  15. K. Wada, S. Takamatsu, H. Watanebe, T. Matsuyama, and H. Horinaka, “Pulse-shaping of gain-switched pulse from multimode laser diode using fiber Sagnac interferometer,” Opt. Express16(24), 19872–19881 (2008). [CrossRef] [PubMed]
  16. A. Consoli and I. Esquivias, “Pulse shortening of gain switched single mode semiconductor lasers using a variable delay interferometer,” Opt. Express20(20), 22481–22489 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited