OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24856–24863

Chiral meta-molecules consisting of gold nanoparticles and genetically engineered tobacco mosaic virus

Mime Kobayashi, Satoshi Tomita, Kei Sawada, Kiyotaka Shiba, Hisao Yanagi, Ichiro Yamashita, and Yukiharu Uraoka  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 24856-24863 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1362 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a chiral meta-molecule in the ultraviolet (UV) and visible (VIS) regions using a complex of Au nanoparticles (NPs) and rod-shaped tobacco mosaic virus (TMV). Au NPs five nm in diameter are uniformly formed on peptide-modified TMV. The peptide-modified TMV with uniform-sized Au NPs has improved dispersion in solution. A negative circular dichroism (CD) peak is produced around 540 nm, at plasmonic resonance wavelength of Au NPs. Additionally, modification of a CD peak in the UV region is observed. Attaching NPs to a virus causes the enhancement and modification of CD peaks in both the UV and VIS regions. Our results open a new avenue for the preparation of three dimensional chiral metamaterials at optical frequencies.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.1245) Materials : Artificially engineered materials
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: July 25, 2012
Revised Manuscript: September 14, 2012
Manuscript Accepted: September 17, 2012
Published: October 16, 2012

Mime Kobayashi, Satoshi Tomita, Kei Sawada, Kiyotaka Shiba, Hisao Yanagi, Ichiro Yamashita, and Yukiharu Uraoka, "Chiral meta-molecules consisting of gold nanoparticles and genetically engineered tobacco mosaic virus," Opt. Express 20, 24856-24863 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000). [CrossRef] [PubMed]
  2. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004). [CrossRef] [PubMed]
  3. N. Berova, K. Nakanishi, and R. W. Woody, Circular dichroism : principles and applications,2nd ed. (Wiley-VCH, 2000).
  4. J. B. Pendry, “A chiral route to negative refraction,” Science306, 1353–1355 (2004). [CrossRef] [PubMed]
  5. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp.10, 509–514 (1968). [CrossRef]
  6. T. G. Schaaff and R. L. Whetten, “Giant gold-glutathione cluster compounds: intense optical activity in metal-based transitions,” J. Phys. Chem. B104, 2630–2641 (2000). [CrossRef]
  7. S. D. Elliott, M. P. Moloney, and Y. K. Gun’ko, “Chiral shells and achiral cores in CdS quantum dots,” Nano Lett.8, 2452–2457 (2008). [CrossRef] [PubMed]
  8. T. Nakashima, Y. Kobayashi, and T. Kawai, “Optical activity and chiral memory of thiol-capped CdTe nanocrystals,” J. Am. Chem. Soc.131, 10342–10343 (2009). [CrossRef] [PubMed]
  9. J. -M. Ha, A. Solovyov, and A. Katz, “Synthesis and characterization of accessible metal surfaces in calixarene-bound gold nanoparticles,” Langmuir25, 10548–10553 (2009). [CrossRef] [PubMed]
  10. A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett.10, 1374–1382 (2010). [CrossRef] [PubMed]
  11. J. George and K. G. Thomas, “Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes,” J. Am. Chem. Soc.132, 2502–2503 (2010). [CrossRef] [PubMed]
  12. J. M. Slocik, A. O. Govorov, and R. R. Naik, “Plasmonic circular dichroism of peptide-functionalized gold nanoparticles,” Nano Lett.11, 701–705 (2011). [CrossRef] [PubMed]
  13. C. Sachse, J. Z. Chen, P. Coureux, M. E. Stroupe, M. Fndrich, and N. Grigorieff, “High-resolution electron microscopy of helical specimens: a fresh look at tobacco mosaic virus,” J. Mol. Biol.371, 812–835 (2007). [CrossRef] [PubMed]
  14. W. L. DeLano, PyMol Molecular Graphics System, Palo Alto, CA. (2002).
  15. M. Kobayashi, I. Yamashita, Y. Uraoka, K. Shiba, and S. Tomita, “Gold nanostructures using tobacco mosaic viruses for optical metamaterials,” Proc. SPIE8070, 8070C (2011).
  16. K. Sano and K. Shiba, “A hexapeptide motif that electrostatically binds to the surface of titanium,” J. Am. Chem. Soc.125, 14234–14235 (2003). [CrossRef] [PubMed]
  17. K. Sano, S. Yoshii, I. Yamashita, and K. Shiba, “In aqua structuralization of a three-dimensional configuration using biomolecules,” Nano Lett.7, 3200–3202 (2007). [CrossRef] [PubMed]
  18. M. Kobayashi, M. Seki, H. Tabata, Y. Watanabe, and I. Yamashita, “Fabrication of aligned magnetic nanoparticles using tobamoviruses,” Nano Lett.10, 773–776 (2010). [CrossRef] [PubMed]
  19. K. M. Bromley, A. J. Patil, A. W. Perriman, G. Stubbs, and S. Mann, “Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles,” J. Mater. Chem.18, 4796–4801 (2008). [CrossRef]
  20. H. Hamamoto, Y. Sugiyama, N. Nakagawa, E. Hashida, Y. Matsunaga, S. Takemoto, Y. Watanabe, and Y. Okada, “A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato,” Nature Biotechnology11, 930–932 (1993). [CrossRef]
  21. S.M. Kelly, T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochim. Biophys. Acta1751, 119–139 (2005). [CrossRef] [PubMed]
  22. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005). [CrossRef] [PubMed]
  23. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007). [CrossRef]
  24. Z. Fan and A. O. Govorov, “Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism,” J. Phys. Chem. C115, 13254–13261 (2011). [CrossRef]
  25. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Hoögele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature483, 311–314 (2012). [CrossRef] [PubMed]
  26. A.-H. Bae, M. Numata, T. Hasegawa, C. Li, K. Kaneko, K. Sakurai, and S. Shinkai, “1D arrangement of Au nanoparticles by the helical structure of schizophyllan: a unique encounter of a natural product with inorganic compounds,” Angew. Chem.117, 2066–2069 (2005). [CrossRef]
  27. C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” Nano Lett.11, 4400–4404 (2011). [CrossRef] [PubMed]
  28. E. D. Palik, Handbook of Optical Constants of Solids (Academic press, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited