OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24864–24872

Time-resolved studies of femtosecond-laser induced melt dynamics

Claudia Unger, Jrgen Koch, Ludger Overmeyer, and Boris N. Chichkov  »View Author Affiliations


Optics Express, Vol. 20, Issue 22, pp. 24864-24872 (2012)
http://dx.doi.org/10.1364/OE.20.024864


View Full Text Article

Enhanced HTML    Acrobat PDF (2797 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work presents time-resolved images of femtosecond-laser-induced melt dynamics in 60 nm gold films on glass substrates. Melt dynamics induced by laser radiation with focus diameters of 6 μm and 8 μm (FWHM) at constant laser fluence is investigated with a temporal resolution of 10 ns. In both cases, the formation of the microbumps and gold jets takes at least 250 ns. It is shown that the formation process can be compared to jetting behavior induced by cavitation bubbles near a free liquid surface. This is confirmed by SEM illustrating a re-entrant spike through a hole in the microbump.

© 2012 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.3900) Materials : Metals
(310.0310) Thin films : Thin films
(100.0118) Image processing : Imaging ultrafast phenomena

ToC Category:
Laser Microfabrication

History
Original Manuscript: August 21, 2012
Revised Manuscript: September 21, 2012
Manuscript Accepted: September 22, 2012
Published: October 16, 2012

Citation
Claudia Unger, Jrgen Koch, Ludger Overmeyer, and Boris N. Chichkov, "Time-resolved studies of femtosecond-laser induced melt dynamics," Opt. Express 20, 24864-24872 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-22-24864


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Korte, J. Koch, and B. N. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys. A79, 879–881 (2004). [CrossRef]
  2. J. Koch, F. Korte, C. Fallnich, and B. N. Chichkov, “Direct-write subwavelength structuring with femtosecond laser pulses,” Opt. Eng.5, 051103 (2005). [CrossRef]
  3. J. Koch, F. Korte, T. Bauer, C. Fallnich, and B. N. Chichkov, “Nanotexturing of gold films by femtosecond laser-induced melt dynamics,” Appl. Phys. A81, 325–328 (2005). [CrossRef]
  4. A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys. A94, 221–230 (2008). [CrossRef]
  5. Y. Nakata, T. Okada, and M. Maeda, “Nano-sized hollow bump array generated by single femtosecond laser pulse,” Jpn. J. Appl. Phys.42, L1452–L1454 (2003). [CrossRef]
  6. Y. Nakata, N. Miyanaga, and T. Okada, “Effect of pulse width and fluence of femtosecond laser on the size of nanobump array,” Appl. Surf. Sci.253, 6555–6557 (2007). [CrossRef]
  7. Y. Nakata, T. Hiromoto, and N. Miyanaga, “Mesoscopic nanomaterials generated by interfering femtosecond laser processing,” Appl. Phys. A101, 471–474 (2010). [CrossRef]
  8. D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett.86, 244103 (2005). [CrossRef]
  9. J. P. Moening, S. S. Thanawala, and D. G. Georgiev, “Formation of high-aspect-ratio protrusions on gold films by localized pulsed laser irradiation,” Appl. Phys. A95, 635–638 (2009). [CrossRef]
  10. S. Anisimov, B. Kapeliovich, and T. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys.-JETP39, 375–377 (1974).
  11. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A63, 109–115 (1996). [CrossRef]
  12. D. von der Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser- solid interaction in the femtosecond time regime,” Appl. Surf. Sci.109/110, 1–10 (1997). [CrossRef]
  13. A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express17, 18820–18825 (2009). [CrossRef]
  14. A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2d and 3d metal nanoparticle structures and arrays,” Opt. Express18, 21198–21203 (2010). [CrossRef] [PubMed]
  15. A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys. A106, 479–487 (2012). [CrossRef]
  16. D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B68, 064114 (2003). [CrossRef]
  17. D. S. Ivanov and L. V. Zhigilei, “Effect of pressure relaxation on the mechanisms of short-pulse laser melting,” Phys. Rev. Lett.91, 105701 (2003). [CrossRef] [PubMed]
  18. D. S. Ivanov, B. Rethfeld, G. M. O’Connor, T. J. Glynn, A. N. Volkov, and L. V. Zhigilei, “The mechanism of nanobump formation in femtosecond pulse laser nanostructuring of thin metal films,” Appl. Phys. A92, 791–796 (2008). [CrossRef]
  19. D. S. Ivanov, Z. Lin, B. Rethfeld, G. M. O’Connor, T. J. Glynn, and L. V. Zhigilei, “Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film,” J. Appl. Phys.107, 013519 (2010). [CrossRef]
  20. Y. P. Meshcheryakov and N. M. Bulgakova, “Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation,” Appl. Phys. A82, 363–368 (2006). [CrossRef]
  21. N. Seifert and G. Betz, “Computer simulations of laser- induced ejection of droplets,” Appl. Surf. Sci.133, 189–194 (1998). [CrossRef]
  22. D. A. Willis and V. Grosu, “The effect of melting-induced volumetric expansion on initiation of laser-induced forward transfer,” Appl. Surf. Sci.253, 4759–4763 (2007). [CrossRef]
  23. J. P. Moening, D. G. Georgiev, and J. G. Lawrence, “Focused ion beam and electron microscopy characterization of nanosharp tips and microbumps on silicon and metal thin films formed via localized single-pulse laser irradiation,” J. Appl. Phys.109, 014304 (2011). [CrossRef]
  24. J. P. Moening, “Formation of nano-sharp tips and microbumps on silicon and metal films by localized single-pulse laser irradiation,” Ph.D. thesis, The University of Toledo (2010).
  25. S. Riedel, M. Schmotz, P. Leiderer, and J. Boneberg, “Nanostructuring of thin films by ns pulsed laser interference,” Appl. Phys. A101, 309–312 (2010). [CrossRef]
  26. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science302, 1382–1385 (2003). [CrossRef] [PubMed]
  27. T. Ao, Y. Ping, K. Widmann, D. F. Price, E. Lee, H. Tam, P. T. Springer, and A. Ng, “Optical properties in nonequilibrium phase transitions,” Phys. Rev. Lett.96, 055001 (2006). [CrossRef] [PubMed]
  28. I. Mingareev and A. Horn, “Time-resolved investigations of plasma and melt ejections in metals by pump-probe shadowgrpahy,” Appl. Phys. A92, 917–920 (2008). [CrossRef]
  29. M. Domke, S. Rapp, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe microscopy with high temporal dynamic range,” Opt. Express20, 10330–10338 (2012). [CrossRef] [PubMed]
  30. D. von der Linde and K. Sokolowski-Tinten, “Physical mechanisms of short pulse laser ablation,” Appl. Surf. Sci.154–155, 1–10 (2000). [CrossRef]
  31. C. Unger, M. Gruene, L. Koch, J. Koch, and B. N. Chichkov, “Time-resolved imaging of hydrogel printing via laser-induced forward transfer,” Appl. Phys. A103, 271–277 (2011). [CrossRef]
  32. M. Gruene, C. Unger, L. Koch, A. Deiwick, and B. Chichkov, “Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting,” Biomed. Eng. Online10:19 (2011). [CrossRef] [PubMed]
  33. J. Koch, E. Fadeeva, M. Engelbracht, C. Ruffert, H. H. Gaatzen, A. Ostendorf, and B. N. Chichkov, “Maskless nonlinear lithography with femtosecond laser pulses,” Appl. Phys. A82, 23–26 (2006). [CrossRef]
  34. N. Chigier and R. Reitz, Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena (AIAA, 1996), chap. Regimes of Jet Breakup and Breakup Mechanisms (Physical Aspects), 109–135.
  35. P. O’Rourke and A. Amdsen, “The tab method for numerical calculations of spray droplet breakup,” Society of Automotive Engineers, Paper 872089 (1987).
  36. N. Seifert, G. Betz, and W. Husinsky, “Droplet formation on metallic surfaces during low-fluence laser irradiation,” Appl. Surf. Sci.103, 63–70 (1996). [CrossRef]
  37. I. Egry, G. Lohoefer, and G. Jacobs, “Surface tension of liquid metals: Results from measurements on ground and in space,” Phys. Rev. Lett.75, 4043–4046 (1955). [CrossRef]
  38. A. Pearson, E. Cox, J. R. Blake, and S. R. Otto, “Bubble interactions near a free surface,” Eng. Anal. Bound. Elem.28, 295–313 (2004). [CrossRef]
  39. P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys.89, 8225–8237 (2001). [CrossRef]
  40. B. S. Mitchell, An Introduction to Materials Engineering and Science for Chemical and Materials Engineers (John Wiley & Sons, 2004).
  41. H. Vogel, Gerthsen Physik (Springer, 1995).
  42. M. S. Brown, N. T. Kattamis, and C. B. Arnold, “Time-resolved dynamics of laser-induced micro-jets from thin liquid films,” Microfluid. Nanofluid.11, 199–207 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited