OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24880–24885

Analysis of the feed-forward method for the referencing of a CW laser to a frequency comb

D. Gatti, T. Sala, A. Gambetta, N. Coluccelli, G. Nunzi Conti, G. Galzerano, P. Laporta, and M. Marangoni  »View Author Affiliations


Optics Express, Vol. 20, Issue 22, pp. 24880-24885 (2012)
http://dx.doi.org/10.1364/OE.20.024880


View Full Text Article

Enhanced HTML    Acrobat PDF (1310 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a comprehensive theoretical and experimental analysis of the feed-forward method for external frequency stabilization of a continuous wave laser against a frequency comb. Application of the method to a distributed feedback diode laser at 1.55 μm allows line narrowing from 800 to 10 kHz, with frequency noise reduction by more than 2 decades up to a Fourier frequency of 100 kHz and a maximum control bandwidth of 0.8 MHz. The results are consistent with a relative phase fluctuation of 1.4 rad rms, as limited by uncompensated high-frequency noise of the slave laser.

© 2012 OSA

OCIS Codes
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(230.1040) Optical devices : Acousto-optical devices
(300.3700) Spectroscopy : Linewidth

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: August 14, 2012
Revised Manuscript: October 8, 2012
Manuscript Accepted: October 9, 2012
Published: October 16, 2012

Citation
D. Gatti, T. Sala, A. Gambetta, N. Coluccelli, G. Nunzi Conti, G. Galzerano, P. Laporta, and M. Marangoni, "Analysis of the feed-forward method for the referencing of a CW laser to a frequency comb," Opt. Express 20, 24880-24885 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-22-24880


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B27(11), B51–B62 (2010). [CrossRef]
  2. V. Ahtee, M. Merimaa, and K. Nyholm, “Precision spectroscopy of acetylene transitions using an optical frequency synthesizer,” Opt. Lett.34(17), 2619–2621 (2009). [CrossRef] [PubMed]
  3. A. Gambetta, D. Gatti, A. Castrillo, G. Galzerano, P. Laporta, L. Gianfrani, and M. Marangoni, “Mid-infrared quantitative spectroscopy by comb-referencing of a quantum-cascade-laser: Application to the CO2 spectrum at 4.3 μm,” Appl. Phys. Lett.99(25), 251107 (2011). [CrossRef]
  4. C. P. McRaven, M. J. Cich, G. V. Lopez, T. J. Sears, D. Hurtmans, and A. W. Mantz, “Frequency comb-referenced measurements of self- and nitrogen-broadening in the ν1 + ν3 band of acetylene,” J. Mol. Spectrosc.266(1), 43–51 (2011). [CrossRef]
  5. C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, and T. W. Hänsch, “Improved Measurement of the Hydrogen 1S-2S Transition Frequency,” Phys. Rev. Lett.107(20), 203001 (2011). [CrossRef] [PubMed]
  6. F. L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, “Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm,” Opt. Lett.28(23), 2324–2326 (2003). [CrossRef] [PubMed]
  7. J. D. Jost, J. L. Hall, and J. Ye, “Continuously tunable, precise, single frequency optical signal generator,” Opt. Express10(12), 515–520 (2002). [PubMed]
  8. L. Matos, O. D. Mücke, J. Chen, and F. X. Kärtner, “Carrier-envelope phase dynamics and noise analysis in octave-spanning Ti:sapphire lasers,” Opt. Express14(6), 2497–2511 (2006). [CrossRef] [PubMed]
  9. J. L. Hall and T. W. Hänsch, “External dye-laser frequency stabilizer,” Opt. Lett.9(11), 502–504 (1984). [CrossRef] [PubMed]
  10. S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics4(7), 462–465 (2010). [CrossRef]
  11. F. Lücking, A. Assion, A. Apolonski, F. Krausz, and G. Steinmeyer, “Long-term carrier-envelope-phase-stable few-cycle pulses by use of the feed-forward method,” Opt. Lett.37(11), 2076–2078 (2012). [CrossRef] [PubMed]
  12. T. Sala, D. Gatti, A. Gambetta, N. Coluccelli, G. Galzerano, P. Laporta, and M. Marangoni, “Wide-bandwidth phase lock between a CW laser and a frequency comb based on a feed-forward configuration,” Opt. Lett.37(13), 2592–2594 (2012). [CrossRef] [PubMed]
  13. E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum.76(6), 063112 (2005). [CrossRef]
  14. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt.49(25), 4801–4807 (2010). [CrossRef] [PubMed]
  15. J. L. Hall and M. Zhu, “An Introduction to Phase Stable Optical Sources,” in Laser Manipulation of Atoms and Ions, E. Arimondo, W. D. Phillips, and F. Strumia, eds. (North Holland, 1992), 671.
  16. S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, and P. De Natale, “Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser,” Opt. Express19(19), 17996–18003 (2011). [CrossRef] [PubMed]
  17. A. A. Mills, D. Gatti, J. Jiang, C. Mohr, W. Mefford, L. Gianfrani, M. Fermann, I. Hartl, and M. Marangoni, “Coherent phase lock of a 9 μm quantum cascade laser to a 2 μm thulium optical frequency comb,” Opt. Lett.37(19), 4083–4085 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited