OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 24949–24956

Active aberration- and point-spread-function control in direct laser writing

Erik H. Waller, Michael Renner, and Georg von Freymann  »View Author Affiliations


Optics Express, Vol. 20, Issue 22, pp. 24949-24956 (2012)
http://dx.doi.org/10.1364/OE.20.024949


View Full Text Article

Enhanced HTML    Acrobat PDF (1895 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We control the point-spread-function of high numerical aperture objectives used for direct laser writing with a spatial light modulator. Combining aberration correction with different types of amplitude filters to reduce the aspect ratio of the point-spread-function enhances the structural and optical quality of woodpile photonic crystals. Here, aberration correction is crucial to ensure the functionality of the filters. Measured point-spread-functions compare well with numerical calculations and with structures generated by direct laser writing. The shaped point-spread-function not only influences the maximum achievable three-dimensional resolution but also proximity effect and optical performance of woodpile photonic crystals.

© 2012 OSA

OCIS Codes
(050.6624) Diffraction and gratings : Subwavelength structures
(050.6875) Diffraction and gratings : Three-dimensional fabrication
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Laser Microfabrication

History
Original Manuscript: August 30, 2012
Revised Manuscript: October 11, 2012
Manuscript Accepted: October 11, 2012
Published: October 16, 2012

Citation
Erik H. Waller, Michael Renner, and Georg von Freymann, "Active aberration- and point-spread-function control in direct laser writing," Opt. Express 20, 24949-24956 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-22-24949


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” JMEMS7, 411–415 (1998).
  2. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004). [CrossRef] [PubMed]
  3. F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. M. Franz, G. von Freymann, M. Wegener, and M. Bastmeyer, “Elastic fully three-dimensional microstructure scaffolds for cell force measurements,” Adv. Mater.22, 868–871 (2010). [CrossRef] [PubMed]
  4. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328, 337–339 (2010). [CrossRef] [PubMed]
  5. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7, 31–37 (2008). [CrossRef]
  6. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325, 1513–1515 (2009). [CrossRef] [PubMed]
  7. M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater.21, 4680–4682 (2009). [CrossRef]
  8. T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, “Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography,” Adv. Mater.24, 2710–2714 (2012). [CrossRef] [PubMed]
  9. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater.20, 1038–1052 (2010). [CrossRef]
  10. Here, as in many other publication, we refer to the iso-intensity surface. However, the actual shape is determined be the distribution of the electric-field (∝ |E|2 for one-photon absorption; ∝ |E|4 for two-photon absorption), as it is this field interacting with the photoinitiator molecules.
  11. M. Gu, Advanced Optical Imaging Theory (Springer, Berlin Heidelberg, 2000)
  12. V. Schmidt, L. Kuna, V. Satzinger, G. Jakopic, and G. Leising, “Two-photon 3D lithography: a versatile fabrication method for complex 3D shapes and optical interconnects within the scope of innovative industrial applications,” JLMN2, 170–177 (2007). [CrossRef]
  13. A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, “Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths,” Nat. Mater.5, 942 (2006). [CrossRef] [PubMed]
  14. M. Hermatschweiler, A. Ledermann, G. A. Ozin, M. Wegener, and G. von Freymann, “Fabrication of silicon inverse woodpile photonic crystals,” Adv. Funct. Mater.17, 2273–2277 (2007). [CrossRef]
  15. M. A. A. Neil, R. Juškaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, “Optimized pupil-plane filters for confocal microscope point-spread function engineering,” Opt. Lett.25, 245–247 (2000). [CrossRef]
  16. P. S. Salter, A. Jesacher, J. B. Spring, B. J. Metcalf, N. Thomas-Peter, R. D. Simmonds, N. K. Langford, I. A. Walmsley, and M. J. Booth, “Adaptive slit beam shaping for direct laser written waveguides,” Opt. Lett.37, 470–472 (2012). [CrossRef] [PubMed]
  17. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express13, 5676–5681 (2005). [CrossRef] [PubMed]
  18. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express19, 9419–9425 (2011). [CrossRef] [PubMed]
  19. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express18, 21091–21099 (2010). [CrossRef]
  20. J. A. Davis, J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Optics38, 5004–5013 (1999). [CrossRef]
  21. J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Vortex knots in light,” New J. Phys.7, 1–11 (2005). [CrossRef]
  22. T. Wilson, R. Juškaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun.141, 298–213 (1997). [CrossRef]
  23. A. S. van de Nes, L. Billy, S. F. Pereira, and J. J. M. Braat, “Calculation of the vectorial field distribution in a stratified focal region of a high numerical aperture imaging system,” Opt. Express12, 1281–1293 (2004). [CrossRef] [PubMed]
  24. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun.89, 413–416 (1994). [CrossRef]
  25. While PSF measurements are ∝ |E|2, the two-photon polymerization is ∝ |E|4. This and the difference between the index of refraction of immersion oil (1.518) and photoresist (1.47) explains the difference in the expected aspect ratios.
  26. I. Staude, M. Thiel, S. Essig, C. Wolff, K. Busch, G. von Freymann, and M. Wegener, “Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths,” Opt. Lett.35, 1094–1096 (2010). [CrossRef] [PubMed]
  27. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev.1–23 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited