OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 25030–25040

Effect of refractive index mismatch on multi-photon direct laser writing

Henry E. Williams, Zhenyue Luo, and Stephen M. Kuebler  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 25030-25040 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1791 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work reports how the process of three-dimensional multi-photon direct laser writing (mpDLW) is affected when there is a small mismatch in refractive index between the material being patterned and the medium in which the focusing objective is immersed. Suspended-line microstructures were fabricated by mpDLW in the cross-linkable epoxide SU-8 as a function of focus depth and average incident power. It is found that even a small refractive index contrast of Δn = + 0.08 causes significant variation in feature width and height throughout the depth of the material. In particular, both the width and height of features can either increase or decrease with depth, depending upon how much the average incident laser power exceeds the threshold for writing. Vectorial diffraction theory is used to obtain insight into the origin of the effect and how to compensate for it. We demonstrate that varying the average focused power is a practical means for controlling the variation in feature size with focal depth.

© 2012 OSA

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Laser Microfabrication

Original Manuscript: August 28, 2012
Revised Manuscript: October 12, 2012
Manuscript Accepted: October 12, 2012
Published: October 17, 2012

Henry E. Williams, Zhenyue Luo, and Stephen M. Kuebler, "Effect of refractive index mismatch on multi-photon direct laser writing," Opt. Express 20, 25030-25040 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, “An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,” Science296(5570), 1106–1109 (2002). [CrossRef] [PubMed]
  2. H. Misawa and S. Juodkazis, 3D Laser Microfabrication: Principles and Applications (Wiley-VCH, Weinheim, 2006).
  3. A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process.76(2), 257–260 (2003). [CrossRef]
  4. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. (Deerfield Beach Fla.)18(3), 265–269 (2006). [CrossRef]
  5. G. Zhou and M. Gu, “Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal,” Opt. Lett.31(18), 2783–2785 (2006). [CrossRef] [PubMed]
  6. Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A, Pure Appl. Opt.7(11), 655–659 (2005). [CrossRef]
  7. N. Huot, R. Stoian, A. Mermillod-Blondin, C. Mauclair, and E. Audouard, “Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass,” Opt. Express15(19), 12395–12408 (2007). [CrossRef] [PubMed]
  8. F. Luo, J. Song, X. Hu, H. Sun, G. Lin, H. Pan, Y. Cheng, L. Liu, J. Qiu, Q. Zhao, and Z. Xu, “Femtosecond laser-induced inverted microstructures inside glasses by tuning refractive index of objective’s immersion liquid,” Opt. Lett.36(11), 2125–2127 (2011). [CrossRef] [PubMed]
  9. S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, “Measuring lateral efficiency of optical traps: The effect of tube length,” Opt. Commun.259(1), 204–211 (2006). [CrossRef]
  10. M. J. Booth and T. Wilson, “Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin,” J. Microsc.200(1), 68–74 (2000). [CrossRef] [PubMed]
  11. I. Escobar, G. Saavedra, M. Martínez-Corral, and J. Lancis, “Reduction of the spherical aberration effect in high-numerical-aperture optical scanning instruments,” J. Opt. Soc. Am. A23(12), 3150–3155 (2006). [CrossRef] [PubMed]
  12. C.-H. Lee, T.-W. Chang, K.-L. Lee, J.-Y. Lin, and J. Wang, “Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching,” Appl. Phys., A Mater. Sci. Process.79(8), 2027–2031 (2004). [CrossRef]
  13. S. H. Park, T. W. Lim, D.-Y. Yang, H. J. Kong, J.-Y. Kim, and K.-S. Lee, “Direct laser patterning on opaque substrate in two-photon polymerization,” Macromol. Res.14(2), 245–250 (2006). [CrossRef]
  14. T. Grossmann, S. Schleede, M. Hauser, T. Beck, M. Thiel, G. von Freymann, T. Mappes, and H. Kalt, “Direct laser writing for active and passive high-Q polymer microdisks on silicon,” Opt. Express19(12), 11451–11456 (2011). [CrossRef] [PubMed]
  15. A. del Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng.17(6), R81–R95 (2007). [CrossRef]
  16. K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett.89(2), 024106 (2006). [CrossRef]
  17. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3(7), 444–447 (2004). [CrossRef] [PubMed]
  18. S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology16(6), 846–849 (2005). [CrossRef]
  19. S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, and P. N. Prasad, “Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction,” ACS Nano5(3), 1947–1957 (2011). [CrossRef] [PubMed]
  20. A. Tal, Y.-S. Chen, H. E. Williams, R. C. Rumpf, and S. M. Kuebler, “Fabrication and characterization of three-dimensional copper metallodielectric photonic crystals,” Opt. Express15(26), 18283–18293 (2007). [CrossRef] [PubMed]
  21. S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregón, and B. J. Nelson, “Magnetic helical micromachines: fabrication, controlled swimming, and cargo trasnport,” Adv. Mater. (Deerfield Beach Fla.)24(6), 811–816 (2012). [CrossRef]
  22. K. Venkatakrishnan, S. Jariwala, and B. Tan, “Maskless fabrication of nano-fluidic channels by two-photon absorption (TPA) polymerization of SU-8 on glass substrate,” Opt. Express17(4), 2756–2762 (2009). [CrossRef] [PubMed]
  23. H. E. Williams, D. J. Freppon, S. M. Kuebler, R. C. Rumpf, and M. A. Melino, “Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8,” Opt. Express19(23), 22910–22922 (2011). [CrossRef] [PubMed]
  24. G. Witzgall, R. Vrijen, E. Yablonovitch, V. Doan, and B. J. Schwartz, “Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures,” Opt. Lett.23(22), 1745–1747 (1998). [CrossRef] [PubMed]
  25. E. S. Wu, J. H. Strickler, W. R. Harrell, and W. W. Webb, “Two-photon lithography for microelectronic application,” SPIE1674, 776–782 (1992). [CrossRef]
  26. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A12(2), 325–332 (1995). [CrossRef]
  27. P. Török and P. Varga, “Electromagnetic diffraction of light focused through a stratified medium,” Appl. Opt.36(11), 2305–2312 (1997). [CrossRef] [PubMed]
  28. B. Šantić, “Measurement of the refractive index and thickness of a transparent film from the shift of the interference pattern due to the sample rotation,” Thin Solid Films518(14), 3619–3624 (2010). [CrossRef]
  29. H. B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,” Appl. Phys. Lett.80(20), 3673–3675 (2002). [CrossRef]
  30. S. Nakanishi, H. B. Sun, and S. Kawata, “Elasticity of two-photon-fabricated nano-wires,” Proc. SPIE 6645, 664514–1 - 664514–9 (2007).
  31. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett.28(5), 301–303 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited