OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 22 — Oct. 22, 2012
  • pp: 25077–25084

Tm-doped fiber laser mode-locked by graphene-polymer composite

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor  »View Author Affiliations

Optics Express, Vol. 20, Issue 22, pp. 25077-25084 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (994 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate mode-locking of a thulium-doped fiber laser operating at 1.94 μm, using a graphene-polymer based saturable absorber. The laser outputs 3.6 ps pulses, with ∼0.4 nJ energy and an amplitude fluctuation ∼0.5%, at 6.46 MHz. This is a simple, low-cost, stable and convenient laser oscillator for applications where eye-safe and low-photon-energy light sources are required, such as sensing and biomedical diagnostics.

© 2012 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(320.7090) Ultrafast optics : Ultrafast lasers
(160.4236) Materials : Nanomaterials
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 18, 2012
Revised Manuscript: August 28, 2012
Manuscript Accepted: August 29, 2012
Published: October 18, 2012

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, "Tm-doped fiber laser mode-locked by graphene-polymer composite," Opt. Express 20, 25077-25084 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett.67, 19–21 (1995). [CrossRef]
  2. R. C. Sharp, D. E. Spock, N. Pan, and J. Elliot, “190-fs passively mode-locked thulium fiber laser with a low threshold,” Opt. Lett.21, 881–883 (1996). [CrossRef]
  3. S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman Soliton Source Using Mode-Locked Tm-Ho Fiber Laser,” IEEE Photon. Technol. Lett.19, 934–936 (2007). [CrossRef]
  4. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. V. Tausenev, V. I. Konov, and E. M. Dianov, “Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett.33, 1336–1338 (2008). [CrossRef]
  5. Q. Wang, J. Geng, T. Luo, and S. Jiang, “Mode-locked 2 μm laser with highly thulium-doped silicate fiber,” Opt. Lett.34, 3616–3618 (2009). [CrossRef]
  6. N. M. Fried and K. E. Murray, “New technologies in Endourology high-power thulium fiber laser ablation of urinary tissues at 1.94 μm,” J. Endourol.19, 25–31 (2005). [CrossRef]
  7. S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, and R. J. D. Miller, “Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery,” PLoS ONE, 5, e13053 (2010). [CrossRef]
  8. W. Zeller, L. Naehle, P. Fuchs, F. Gerschuetz, L. Hildebrandt, and J. Koeth, “DFB Lasers Between 760 nm and 16 μm for Sensing Applications,” Sensors10, 2492–2510 (2010). [CrossRef]
  9. B. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys.19, 855–866 (2009). [CrossRef]
  10. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared Coherent Sources And Applications (Springer, 2008). [CrossRef]
  11. F. G. Gebhardt, “High power laser propagation,” Appl. Opt.15, 1479–1493 (1976). [CrossRef]
  12. M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron.15,191–206(2009). [CrossRef]
  13. O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys.6, 177 (2004). [CrossRef]
  14. U. Keller, “Recent developments in compact ultrafast lasers,” Nature424, 831–838 (2003). [CrossRef]
  15. Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55um,” Appl. Phys. Lett.81, 975– 977 (2002). [CrossRef]
  16. M. Breusing, C. Ropers, and T. Elsaesser, “Ultrafast Carrier Dynamics in Graphite,” Phys. Rev. Lett.102, 086809 (2009). [CrossRef]
  17. D. Brida, C. Manzoni, G. Cerullo, A. Tomadin, M. Polini, R. R. Nair, A. K. Geim, K. S. Novoselov, S. Milana, A. Lombardo, and A. C. Ferrari, in Proceedings of Quantum Electronics and Laser Science Conference (QELS), San Jose, California (OSA, 2012), paper QTh3H.1.
  18. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3, 738–742 (2008). [CrossRef]
  19. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3, 653–660 (2010). [CrossRef]
  20. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98, 073106 (2011). [CrossRef]
  21. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater.21, 3874–3899 (2009). [CrossRef]
  22. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene Photonics and Optoelectronics,” Nat. Photonics4, 611–622 (2010). [CrossRef]
  23. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4, 803–810 (2010). [CrossRef]
  24. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron.10, 137–146 (2004). [CrossRef]
  25. V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers,” Adv. Mater.20, 4040–4043 (2008). [CrossRef]
  26. E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett.34, 3526–3528 (2009). [CrossRef]
  27. Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett.93, 061114 (2008). [CrossRef]
  28. Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95, 253102 (2009). [CrossRef]
  29. Z. Sun, T. Hasan, F. Wang, A. G. Rozhin, I. H. White, and A. C. Ferrari, “Ultrafast Stretched-Pulse Fiber Laser Mode-Locked by Carbon Nanotubes,” Nano Res.3, 404–411 (2010). [CrossRef]
  30. G. Della Valle, R. Osellame, G. Galzerano, N. Chiodo, G. Cerullo, P. Laporta, O. Svelto, U. Morgner, A. G. Rozhin, V. Scardaci, and A. C. Ferrari, “Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser,” Appl. Phys. Lett.89, 231115 (2006). [CrossRef]
  31. S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97, 111114 (2010). [CrossRef]
  32. T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,” Opt. Express13, 8025–8031 (2005). [CrossRef]
  33. A. Schmidt, S. Rivier, G. Steinmeyer, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, X. Mateos, M. Aguilo, F. Diaz, V. Petrov, and U. Griebner, “Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber,” Opt. Lett.33, 729–731 (2008). [CrossRef]
  34. P. A. Obraztsov, A. A. Sirotkin, E. D. Obraztsova, Y. P. Svirko, and S. V. Garnov, “Carbon-Nanotube-Based Saturable Absorbers for Near Infrared Solid State Lasers,” Opt. Rev.17, 290–293 (2010). [CrossRef]
  35. Y. W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Passively mode-locked lasers with 17.2 GHz fundamental-mode repetition rate pulsed by carbon nanotubes,” Opt. Lett.32, 430–432 (2007). [CrossRef]
  36. I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient Mode-Locking of Sub-70-fs Ti:Sapphire Laser by Graphene Saturable Absorber,” Appl. Phys. Express5, 032701 (2012). [CrossRef]
  37. W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:YAG with graphene as a saturable absorber,” Appl. Phys. Lett.96, 031106 (2010). [CrossRef]
  38. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, and F. Rotermund, “Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber,” Opt. Lett.33, 2449–2451 (2008). [CrossRef]
  39. A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive modelocked lasing”, Opt. Express18, 23054–23061 (2010). [CrossRef]
  40. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97, 203106 (2010). [CrossRef]
  41. J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3 laser,” Laser Phys. Lett.9, 15–19 (2012). [CrossRef]
  42. J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2 μm wavelength,” Opt. Lett.37, 2085–2087 (2012). [CrossRef]
  43. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature442, 282–286 (2006). [CrossRef]
  44. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mostrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films,” Adv. Funct. Mater.19, 2577–2583 (2009). [CrossRef]
  45. X. Li, W. Cai, J. An, S. Kim, J. Nah, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science324,1312–1314(2009). [CrossRef]
  46. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457, 706–710 (2009). [CrossRef]
  47. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gunko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3, 563–568 (2008). [CrossRef]
  48. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30 inch graphene films for transparent electrodes,” Nat. Nanotechnol.5, 574–578 (2010). [CrossRef]
  49. C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics,” J. Phys. Chem. B108, 19912–19916 (2004). [CrossRef]
  50. P. W. Sutter, J.-I. Flege, and E. A. Sutter, “Epitaxial graphene on ruthenium,” Nat. Mater.7, 406–411 (2008). [CrossRef]
  51. J.S. Wu, W. Pisula, and K. Mullen, “Graphenes as potential material for electronics,” Chem. Rev.107,718– 747(2007). [CrossRef]
  52. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett.97, 187401 (2006). [CrossRef]
  53. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61, 14095–14107 (2000). [CrossRef]
  54. C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, “Raman Spectroscopy of Graphene Edges,” Nano Lett.9, 1433–1441 (2009). [CrossRef]
  55. A. C. Ferrari and J. Robertson, “Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon,” Phys. Rev. B64, 075414 (2001). [CrossRef]
  56. L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies,” Nano Lett.11, 3190–3196 (2011). [CrossRef]
  57. S. Latil, V. Meunier, and L. Henrard, “Massless fermions in multilayer graphitic systems with misoriented layers: Ab initio calculations and experimental fingerprints,” Phys. Rev. B76, 201402 (2007). [CrossRef]
  58. V. G. Kravets, A. N. Grigorenko, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010). [CrossRef]
  59. H. C. Haas, H. Husek, and L. D. Taylor, “On the ultraviolet absorption spectrum of polyvinyl alcohol,” Journal of Polymer Science Part A: General Papers1, 1215–1226 (1963). [CrossRef]
  60. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science320, 1308–1308 (2008). [CrossRef]
  61. G. P. Agrawal, Applications of Nonlinear Fiber Optics. (Academic Press, 2001).
  62. D. Von der Linde, “Characterization of the Noise in Continuously Operating Mode-Locked Lasers,” Appl. Phys. B39, 201–217 (1986). [CrossRef]
  63. D. Turchinovich, X. M. Liu, and J. Laegsgaard, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express16, 14004–14014 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited