OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25228–25238

Noncollinear parametric fluorescence by chirped quasi-phase matching for monocycle temporal entanglement

Akira Tanaka, Ryo Okamoto, Hwan Hong Lim, Shanthi Subashchandran, Masayuki Okano, Labao Zhang, Lin Kang, Jian Chen, Peiheng Wu, Toru Hirohata, Sunao Kurimura, and Shigeki Takeuchi  »View Author Affiliations

Optics Express, Vol. 20, Issue 23, pp. 25228-25238 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2675 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quantum entanglement of two photons created by spontaneous parametric downconversion (SPDC) can be used to probe quantum optical phenomena during a single cycle of light. Harris [Opt. Express 98, 063602 (2007)] suggested using ultrabroad parametric fluorescenc generated from a quasi-phase-matched (QPM) device whose poling period is chirped. In the Harris’s original proposal, it is assumed that the photons are collinearly generated and then spatially separated by frequency filtering Here, we alternatively propose using noncollinearly generated SPDC. In our numerical calculation, to achieve 1.2 cycle temporal correlation for a 532 nm pump laser, only 10% -chirped device is sufficien when noncollinear condition is applied, while a largely chirped (50%) device is required in collinear condition. We also experimentally demonstrate an octave-spanning (790–1610 nm) noncollinear parametric fluorescenc from a 10% chirped MgSLT crystal using both a superconducting nanowire single-photon detector and photomultiplier tube as photon detectors. The observed SPDC bandwidth is 194 THz, which is the largest width achieved to date for a chirped QPM device. From this experimental result, our numerical analysis predicts that the bi-photon can be compressed to 1.2 cycles with appropriate phase compensation.

© 2012 OSA

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(270.5570) Quantum optics : Quantum detectors
(320.7160) Ultrafast optics : Ultrafast technology
(190.4975) Nonlinear optics : Parametric processes
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Akira Tanaka, Ryo Okamoto, Hwan Hong Lim, Shanthi Subashchandran, Masayuki Okano, Labao Zhang, Lin Kang, Jian Chen, Peiheng Wu, Toru Hirohata, Sunao Kurimura, and Shigeki Takeuchi, "Noncollinear parametric fluorescence by chirped quasi-phase matching for monocycle temporal entanglement," Opt. Express 20, 25228-25238 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  2. T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science316, 726–729 (2007). [CrossRef] [PubMed]
  3. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987). [CrossRef] [PubMed]
  4. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New High-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995). [CrossRef] [PubMed]
  5. V. Giovannetti, S. Lloyd, L. Maccone, and F. N. C. Wong, “Clock synchronization with dispersion cancellation,” Phys. Rev. Lett.87, 117902 (2001). [CrossRef] [PubMed]
  6. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A65, 053817 (2002). [CrossRef]
  7. N. Mohan, O. Minaeva, G. N. Goltsman, M. F. Saleh, M. B. Nasr, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm,” Appl. Optics48, 4009–4017 (2009). [CrossRef]
  8. J. Javanainen and P. L. Gould, “Linear intensity sependence of a two-photon transition rate,” Phys. Rev. A41, 5088–5091 (1990). [CrossRef] [PubMed]
  9. J. Gea-Banacloche, “Two-photon absorption of nonclassical light,” Phys. Rev. Lett.62, 1603 (1989). [CrossRef] [PubMed]
  10. O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Joint temporal density measurements for two-photon state characterization,” Phys. Rev. Lett.101, 153602 (2008). [CrossRef] [PubMed]
  11. K. G. Katamadze and S. P. Kulik, “Control of the spectrum of the biphoton field” Journal of Experimental and Theoretical Physics112, 20 (2011). [CrossRef]
  12. M. Okano, R. Okamoto, A. Tanaka, S. Subashchandran, and S. Takeuchi, “Generation of broadband spontaneous parametric fluorescenc using multiple bulk nonlinear crystals,” Opt. Express20 (13), 13977–13987 (2012). [CrossRef] [PubMed]
  13. S. E. Harris, “ Chirp and compress: toward single-cycle biphotons,” Phys. Rev. Lett.98, 063602 (2007). [CrossRef] [PubMed]
  14. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Competing collinear and noncollinear interactions in chirped quasi-phase-matched optical parametric amplifiers” J. Opt. Soc. Am. B25, 1402–1413 (2008). [CrossRef]
  15. M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion,” Phys. Rev. Lett.100, 183601 (2008). [CrossRef] [PubMed]
  16. S. Sensarn, G. Y. Yin, and S. E. Harris, “Generation and compression of chirped biphotons,” Phys. Rev. Lett.104, 253602 (2010). [CrossRef] [PubMed]
  17. S. Subashchandran, R. Okamoto, A. Tanaka, M. Okano, L. Zhang, L. Kang, J. Chen, P. Wu, and S. Takeuchi, “Spectral dependence of ultra-low dark count superconducting single photon detector for the evaluation of broadband parametric fluorescence” Proc. SPIE8268, 82681V (2011).
  18. M. Niigaki, T. Hirohata, T. Suzuki, H. Kan, and T. Hiruma, “Field-assisted photoemission from InP/InGaAsP photocathode with p/n junction,” Appl. Phys. Lett.71, 2493–2495 (1997). [CrossRef]
  19. A. Pe’er, B. Dayan, A. A. Friesem, and Y. Silberberg, “Temporal shaping of entangled photons,” Phys. Rev. Lett.94, 073601 (2005). [CrossRef]
  20. S. Du, “Atomic-resonance-enhanced nonlinear optical frequency conversion with entangled photon pairs,” Phys. Rev. A83, 033807 (2011). [CrossRef]
  21. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifier using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B25, 463–480 (2008). [CrossRef]
  22. S.-Y. Baek and Y.-H. Kim, “Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion,” Phys. Rev. A77, 043807 (2008). [CrossRef]
  23. A. Gatti, R. Zambrini, M. San Miguel, and L. A. Lugiato, “Multiphoton multimode polarization entanglement in parametric down-conversion,” Phys. Rev. A68, 053807 (2003). [CrossRef]
  24. T. Katagai, S. Jianhong, I. Shoji, M. Nakamura, and S. Kurimura, “Refractive index dispersion of Mg-doped stoichiometric LiTaO3,” in Meeting Abstracts of the Japan Society of Applied Physics, (Academic, Toyama, Japan, 2009), 3, 11a-P8-33, 1107.
  25. N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with a periodically poled stoichiometric lithium tantalate,” Mat. Sci. Eng. B-Solid.120, 146–149 (2005). [CrossRef]
  26. H. Lim, T. Katagai, S. Kurimura, T. Shimizu, K. Noguchi, N. Ohmae, N. Mio, and I. Shoji, “Thermal performance in high power SHG characterized by phase-matched calorimetry,” Opt. Express19, 22588–22593 (2011). [CrossRef] [PubMed]
  27. W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A56, 1627 (1997). [CrossRef]
  28. S. Akturk, X. Gu, M. Kimmel, and R. Trebino, “Extremely simple single-prism ultrashort-pulse compressor,” Opt. Express14, 10101–10108 (2006). [CrossRef] [PubMed]
  29. Note that the spectral phase of biphotons is mostly an even function of ωp/2; because a Hong-Ou-Mandel interferometer cancels even order dispersion, the HOM dip that appears in reference [15] using a chirped PPSLT crystal leads to a FWHM of 4 fs, which is nearly Fourier-transform limited.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited