OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25311–25316

Nonlinear absorption reversing between an electroactive ligand and its metal complexes

Konstantinos Iliopoulos, Abdelkrim El-Ghayoury, Hasnaa El Ouazzani, Mindaugas Pranaitis, Esmah Belhadj, Emilie Ripaud, Miloud Mazari, Marc Sallé, Denis Gindre, and Bouchta Sahraoui  »View Author Affiliations

Optics Express, Vol. 20, Issue 23, pp. 25311-25316 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (920 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the nonlinear absorption investigation of an electroactive ligand and two ruthenium and iron metal complexes under 532 nm, 30 ps laser excitation, by the “open aperture” Z-scan technique. Significant nonlinear optical parameters have in all cases been measured, while the nonlinear attribute has been found to change from saturable to reverse saturable absorption between the initial ligand and its complexes.

© 2012 OSA

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

ToC Category:
Nonlinear Optics

Original Manuscript: June 28, 2012
Revised Manuscript: August 22, 2012
Manuscript Accepted: August 22, 2012
Published: October 23, 2012

Konstantinos Iliopoulos, Abdelkrim El-Ghayoury, Hasnaa El Ouazzani, Mindaugas Pranaitis, Esmah Belhadj, Emilie Ripaud, Miloud Mazari, Marc Sallé, Denis Gindre, and Bouchta Sahraoui, "Nonlinear absorption reversing between an electroactive ligand and its metal complexes," Opt. Express 20, 25311-25316 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Fuks-Janczarek, J. Luc, B. Sahraoui, F. Dumur, P. Hudhomme, J. Berdowski, and I. V. Kityk, “Third-order nonlinear optical figure of merits for conjugated TTF-quinone molecules,” J. Phys. Chem. B109(20), 10179–10183 (2005). [CrossRef] [PubMed]
  2. N. Terkia-Derdra, R. Andreu, M. Salle, E. Levillain, J. Orduna, J. Garin, E. Orti, R. Viruela, R. Pou-Amerigo, B. Sahraoui, A. Gorgues, J. F. Favard, and A. Riou, “π Conjugation across the tetrathiafulvalene core: synthesis of extended tetrathiafulvalene derivatives and theoretical analysis of their unusual electrochemical properties,” Chemistry6(7), 1199–1213 (2000). [CrossRef] [PubMed]
  3. K. Iliopoulos, R. Czaplicki, H. El Ouazzani, J. Y. Balandier, M. Chas, S. Goeb, M. Salle, D. Gindre, and B. Sahraoui, “Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives,” Appl. Phys. Lett.97(10), 101104 (2010). [CrossRef]
  4. B. Sahraoui, X. N. Phu, M. Sallé, and A. Gorgues, “Electronic and nuclear contributions to the third-order nonlinear optical susceptibilities of new p-N, N’-dimethylaniline tetrathiafulvalene derivatives,” Opt. Lett.23(23), 1811–1813 (1998). [CrossRef] [PubMed]
  5. J. F. Lamère, I. Malfant, A. Sournia-Saquet, P. G. Lacroix, J. M. Fabre, L. Kaboub, T. Abbaz, A. Gouasmia, I. Asselberghs, and K. Clays, “Quadratic nonlinear optical response in partially charged donor-substituted tetrathiafulvalene: From a computational investigation to a rational synthetic feasibility,” Chem. Mater.19(4), 805–815 (2007). [CrossRef]
  6. B. Insuasty, C. Atienza, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, and B. Villacampa, “Electronic and structural effects on the nonlinear optical behavior in push-pull TTF/tricarbonyl chromiun arene complexes,” J. Org. Chem.69(21), 6986–6995 (2004). [CrossRef] [PubMed]
  7. M. Bendikov, F. Wudl, and D. F. Perepichka, “Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: The brick and mortar of organic electronics,” Chem. Rev.104(11), 4891–4946 (2004). [CrossRef] [PubMed]
  8. M. González, J. L. Segura, C. Seoane, N. Martín, J. Garín, J. Orduna, R. Alcalá, B. Villacampa, V. Hernández, and J. T. López Navarrete, “Tetrathiafulvalene derivatives as NLO-phores: Synthesis, electrochemistry, Raman spectroscopy, theoretical calculations, and NLO properties of novel TTF-derived donor-π-acceptor dyads,” J. Org. Chem.66(26), 8872–8882 (2001). [CrossRef] [PubMed]
  9. D. Lorcy, N. Bellec, M. Fourmigue, and N. Avarvari, “Tetrathiafulvalene-based group XV ligands: Synthesis, coordination chemistry and radical cation salts,” Coord. Chem. Rev.253(9–10), 1398–1438 (2009) (and references therein). [CrossRef]
  10. Q. Wang, P. Day, J.-P. Griffiths, H. Nie, and J. D. Wallis, “Synthetic strategies for preparing BEDT-TTF derivatives functionalised with metal ion binding groups,” New J. Chem.30(12), 1790–1800 (2006). [CrossRef]
  11. B. J. Coe, T. J. Meyer, and P. S. White, “Control of axial ligand substitution in trans-bis(2,2'-bipyridine)ruthenium(II) complexes. Crystal and molecular structure of trans-(4-ethylpyridine)(dimethyl sulfoxide)bis(2,2'-bipyridine)ruthenium(II) hexafluorophosphate, trans-[Ru(bpy)2(4-Etpy)(DMSO)](PF6)2,” Inorg. Chem.32(19), 4012–4020 (1993). [CrossRef]
  12. H. Hofmeier and U. S. Schubert, “Recent developments in the supramolecular chemistry of terpyridine-metal complexes,” Chem. Soc. Rev.33(6), 373–399 (2004). [CrossRef] [PubMed]
  13. E. Ripaud, A. El-Ghayoury, E. Belhadj, M. Mazari, and M. Sallé, Manuscript in preparation.
  14. K. Heuzé, M. Fourmigué, and P. Batail, “The crystal chemistry of amide-functionalized ethylenedithiotetrathiafulvalenes: EDT-TTF-CONRR′ (R, R′ = H, Me),” J. Mater. Chem.9(10), 2373–2379 (1999). [CrossRef]
  15. T. Mutai, J.-D. Cheon, S. Arita, and K. Araki, “Phenyl-substituted 2,2′:6′,2″-terpyridines as highly fluorescent compounds—effect of the number of pyridine rings on fluorescence properties,” J.Chem.Soc., Perkin Trans.2(5), 862–865 (2002). [CrossRef]
  16. T. Mutai, J.-D. Cheon, G. Tsuchiya, and K. Araki, “6-Amino-2,2′:6′,2″-terpyridines as highly fluorescent compounds—effect of the number of pyridine rings on fluorescence properties,” J. Chem. Soc. Perkin Trans.2(5), 862–865 (2002).
  17. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990). [CrossRef]
  18. B. Gu, K. Lou, J. Chen, Y. Li, H.-T. Wang, and W. Ji, “Excited-state enhancement of third-order optical nonlinearities: photodynamics and characterization,” Opt. Express18(26), 26843–26853 (2010). [CrossRef] [PubMed]
  19. M. Konstantaki, E. Koudoumas, S. Couris, P. Laine, E. Amouyal, and S. Leach, “Substantial non-linear optical response of new polyads based on Ru and Os complexes of modified terpyridines,” J. Phys. Chem. B105(44), 10797–10804 (2001). [CrossRef]
  20. T. Cassano, R. Tommasi, M. Arca, and F. A. Devillanova, “Investigation of the nonlinear absorption of [M(Et2timdt)2 ] (M = Pd, Pt) in the pico- and nanosecond timescales using the Z-scan technique,” J. Phys. Condens. Matter18(23), 5279–5290 (2006). [CrossRef]
  21. W. F. Guo, X. B. Sun, J. Sun, X. Q. Wang, G. H. Zhang, Q. Ren, and D. Xu, “Nonlinear optical absorption of a metal dithiolene complex irradiated by different laser pulses at near-infrared wavelengths,” Chem. Phys. Lett.435(1–3), 65–68 (2007). [CrossRef]
  22. K. P. Unnikrishnan, J. Thomas, V. P. N. Nampoori, and C. P. G. Vallabhan, “Wavelength dependence of nonlinear absorption in a bis-phthalocyanine studied using the Z-scan technique,” Appl. Phys. B75(8), 871–874 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited