OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25345–25355

CMOS compatible polarization splitter using hybrid plasmonic waveguide

Jingyee Chee, Shiyang Zhu, and G. Q. Lo  »View Author Affiliations

Optics Express, Vol. 20, Issue 23, pp. 25345-25355 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1412 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We design and experimentally demonstrate an ultrashort integrated polarization splitter on silicon-on-insulator (SOI) platform. Our polarization splitter uses a hybrid plasmonic waveguide as the middle waveguide in a three-core arrangement to achieve large birefringence, allowing only transverse-magnetic (TM) polarized light to directionally couple to the cross port of the directional coupler. Finite-difference time-domain (FDTD) and eigenmode expansive (EME) calculations show that the splitter can achieve an extinction ratio of greater than 15 dB with less than 0.5 dB insertion losses. The polarization splitter was fabricated on SOI platform using standard complementary metal-oxide-semiconductor (CMOS) technology and measured at telecommunications wavelengths. Extinction ratios of 12.3 dB and 13.9 dB for the transverse-electric (TE) and TM polarizations were obtained, together with insertion losses of 2.8 dB and 6.0 dB.

© 2012 OSA

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optical Devices

Original Manuscript: September 6, 2012
Manuscript Accepted: September 26, 2012
Published: October 23, 2012

Jingyee Chee, Shiyang Zhu, and G. Q. Lo, "CMOS compatible polarization splitter using hybrid plasmonic waveguide," Opt. Express 20, 25345-25355 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007). [CrossRef]
  2. A. Hosseini, S. Rahimi, X. Xu, D. Kwong, J. Covey, and R. T. Chen, “Ultracompact and fabrication-tolerant integrated polarization splitter,” Opt. Lett.36(20), 4047–4049 (2011). [CrossRef] [PubMed]
  3. B. K. Yang, S. Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett.21(7), 432–434 (2009). [CrossRef]
  4. I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photon. Technol. Lett.17(1), 100–102 (2005). [CrossRef]
  5. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express14(25), 12401–12408 (2006). [CrossRef] [PubMed]
  6. M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett.30(9), 967–969 (2005). [CrossRef] [PubMed]
  7. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Sci. Appl.1(3), 1–14 (2012). [CrossRef]
  8. X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett.89(17), 171115 (2006). [CrossRef]
  9. S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett.98(15), 151101 (2011). [CrossRef]
  10. D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett.36(13), 2590–2592 (2011). [CrossRef] [PubMed]
  11. D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express19(19), 18614–18620 (2011). [CrossRef] [PubMed]
  12. C. Y. Tai, S. H. Chang, and T. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett.19(19), 1448–1450 (2007). [CrossRef]
  13. F. Liu, Y. Rao, X. Tang, R. Wan, Y. Huang, W. Zhang, and J. Peng, “Hybrid three-arm coupler with long range surface plasmon polariton and dielectric waveguides,” Appl. Phys. Lett.90(24), 241120 (2007). [CrossRef]
  14. C. L. Zou, F. W. Sun, C. H. Dong, X. F. Ren, J. M. Cui, X. D. Chen, Z. F. Han, and G.-C. Guo, “Broadband integrated polarization beam splitter with surface plasmon,” Opt. Lett.36(18), 3630–3632 (2011). [CrossRef] [PubMed]
  15. F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett.100(24), 241105 (2012). [CrossRef]
  16. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  17. H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010). [CrossRef]
  18. S. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of vertical Cu/SiO2/Si hybrid plasmonic waveguide components on an SOI platform,” IEEE Photon. Technol. Lett.24(14), 1224–1226 (2012). [CrossRef]
  19. S. Zhu, G. Q. Lo, and D. L. Kwong, “Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths,” Opt. Express20(14), 15232–15246 (2012). [CrossRef] [PubMed]
  20. F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett.37(16), 3372–3374 (2012). [CrossRef]
  21. J. Donnelly, “Limitations on power-transfer efficiency in three-guide optical couplers,” IEEE J. Quantum Electron.22(5), 610–616 (1986). [CrossRef]
  22. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011). [CrossRef] [PubMed]
  23. S. Roberts, “Optical properties of copper,” Phys. Rev.118(6), 1509–1518 (1960). [CrossRef]
  24. http://www.lumerical.com

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited