OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25409–25420

Prototype of an ultra-stable optical cavity for space applications

B. Argence, E. Prevost, T. Lévèque, R. Le Goff, S. Bize, P. Lemonde, and G. Santarelli  »View Author Affiliations

Optics Express, Vol. 20, Issue 23, pp. 25409-25420 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2427 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the main features and performances of a prototype of an ultra-stable cavity designed and realized by industry for space applications with the aim of space missions. The cavity is a 100 mm long cylinder rigidly held at its midplane by a engineered mechanical interface providing an efficient decoupling from thermal and vibration perturbations. Intensive finite element modeling was performed in order to optimize thermal and vibration sensitivities while getting a high fundamental resonance frequency. The system was designed to be transportable, acceleration tolerant (up to several g) and temperature range compliant [−33°C ; 73°C]. Thermal isolation is ensured by gold coated Aluminum shields inside a stainless steel enclosure for vacuum. The axial vibration sensitivity was evaluated at (4 ± 0.5) × 10−11/(m.s−2), while the transverse one is < 1 × 10−11/(m.s−2). The fractional frequency instability is ≲ 1×10−15 from 0.1 to a few seconds and reaches 5–6×10−16 at 1s.

© 2012 OSA

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(140.4780) Lasers and laser optics : Optical resonators
(140.3425) Lasers and laser optics : Laser stabilization
(120.6085) Instrumentation, measurement, and metrology : Space instrumentation

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: July 12, 2012
Manuscript Accepted: October 5, 2012
Published: October 25, 2012

B. Argence, E. Prevost, T. Lévèque, R. Le Goff, S. Bize, P. Lemonde, and G. Santarelli, "Prototype of an ultra-stable optical cavity for space applications," Opt. Express 20, 25409-25420 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Katori, “Optical lattice clocks and quantum metrology,” Nature Photon.5, 203–210 (2011). [CrossRef]
  2. M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science331, 1043–1046 (2011). [CrossRef] [PubMed]
  3. N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+,” Phys. Rev. Lett.108, 090801 (2012). [CrossRef] [PubMed]
  4. J. Sherman, N. Lemke, N. Hinkley, M. Pizzocaro, R. Fox, A. Ludlow, and C. Oates, “High-accuracy measurement of atomic polarizability in an optical lattice clock,” Phys. Rev. Lett.108, 153002 (2012). [CrossRef] [PubMed]
  5. J. J. McFerran, L. Yi, S. Mejri, S. Di Manno, W. Zhang, J. Guéna, Y. Le Coq, and S. Bize, “Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty = 5.7 × 10−15,” Phys. Rev. Lett.108, 183004 (2012). [CrossRef] [PubMed]
  6. F. Acernese, M. Alshourbagy, P. Amico, F. Antonucci, S. Aoudia, K. G. Arun, P. Astone, S. Avino, L. Baggio, G. Ballardin, F. Barone, L. Barsotti, M. Barsuglia, T. S. Bauer, S. Bigotta, S. Birindelli, M. A. Bizouard, C. Boccara, F. Bondu, L. Bosi, S. Braccini, C. Bradaschia, A. Brillet, V. Brisson, D. Buskulic, G. Cagnoli, E. Calloni, E. Campagna, F. Carbognani, F. Cavalier, R. Cavalieri, G. Cella, E. Cesarini, E. Chassande-Mottin, S. Chatterji, F. Cleva, E. Coccia, C. Corda, A. Corsi, F. Cottone, J.-P. Coulon, E. Cuoco, S. D’Antonio, A. Dari, V. Dattilo, M. Davier, R. D. Rosa, M. D. Prete, L. D. Fiore, A. D. Lieto, M. D. P. Emilio, A. D. Virgilio, M. Evans, V. Fafone, I. Ferrante, F. Fidecaro, I. Fiori, R. Flaminio, J.-D. Fournier, S. Frasca, F. Frasconi, L. Gammaitoni, F. Garufi, E. Genin, A. Gennai, A. Giazotto, V. Granata, C. Greverie, D. Grosjean, G. Guidi, S. Hamdani, S. Hebri, H. Heitmann, P. Hello, D. Huet, P. L. Penna, M. Laval, N. Leroy, N. Letendre, B. Lopez, M. Lorenzini, V. Loriette, G. Losurdo, J.-M. Mackowski, E. Majorana, N. Man, M. Mantovani, F. Marchesoni, F. Marion, J. Marque, F. Martelli, A. Masserot, F. Menzinger, L. Milano, Y. Minenkov, M. Mohan, J. Moreau, N. Morgado, S. Mosca, B. Mours, I. Neri, F. Nocera, G. Pagliaroli, C. Palomba, F. Paoletti, S. Pardi, A. Pasqualetti, R. Passaquieti, D. Passuello, F. Piergiovanni, L. Pinard, R. Poggiani, M. Punturo, P. Puppo, O. Rabaste, P. Rapagnani, T. Regimbau, A. Remillieux, F. Ricci, I. Ricciardi, A. Rocchi, L. Rolland, R. Romano, P. Ruggi, D. Sentenac, S. Solimeno, B. L. Swinkels, R. Terenzi, A. Toncelli, M. Tonelli, E. Tournefier, F. Travasso, G. Vajente, J. F. J. van den Brand, S. van der Putten, D. Verkindt, F. Vetrano, A. Viceré, J.-Y. Vinet, H. Vocca, and M. Yvert, “Virgo status,” Class. Quantum Grav.25, 184001 (2008). [CrossRef]
  7. S. Herrmann, A. Senger, K. Mohle, M. Nagel, E. Kovalchuk, and A. Peters, “Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level,” Phys. Rev. D80, 105011 (2009). [CrossRef]
  8. C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science329, 1630–1633 (2010). [CrossRef] [PubMed]
  9. H. Jiang, F. Kéfélian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance frequency transfer over an urban fiber link using optical phase stabilization,” J. Opt. Soc. Am. B.25, 2029–2035 (2008). [CrossRef]
  10. K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science336, 441–444 (2012). [CrossRef] [PubMed]
  11. K. Danzmann and A. Rüdiger, “Lisa technology - concept, status, prospects,” Class. Quantum Grav.20, S1 (2003). [CrossRef]
  12. K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett.93, 250602 (2004). [CrossRef]
  13. T. Legero, T. Kessler, and U. Sterr, “Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors,” J. Opt. Soc. Am. B.27, 914–919 (2010). [CrossRef]
  14. T. Kessler, T. Legero, and U. Sterr, “Thermal noise in optical cavities revisited,” J. Opt. Soc. Am. B29, 178–184 (2012). [CrossRef]
  15. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40 mHz linewidth laser based on a silicon single-crystal optical cavity,” Nature Photon.6, 687–692 (2012). [CrossRef]
  16. A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15,” Opt. Lett.32, 641–643 (2007). [CrossRef] [PubMed]
  17. S. A. Webster, M. Oxborrow, S. Pugla, J. Millo, and P. Gill, “Thermal-noise-limited optical cavity,” Phys. Rev. A77, 033847 (2008). [CrossRef]
  18. Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16–level laser stabilization,” Nature Photon.5, 158–161 (2011). [CrossRef]
  19. J. Millo, D. V. Magalhães, C. Mandache, Y. Le Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, “Ultrastable lasers based on vibration insensitive cavities,” Phys. Rev. A79, 053829 (2009). [CrossRef]
  20. S. Webster and P. Gill, “Force-insensitive optical cavity,” Opt. Lett.36, 3572–3574 (2011). [CrossRef] [PubMed]
  21. S. Vogt, C. Lisdat, T. Legero, U. Sterr, I. Ernsting, A. Nevsky, and S. Schiller, “Demonstration of a transportable 1 Hz-linewidth laser,” Appl. Phys. B104, 741–745 (2011). [CrossRef]
  22. D. R. Leibrandt, M. J. Thorpe, J. C. Bergquist, and T. Rosenband, “Field-test of a robust, portable, frequency-stable laser,” Opt. Express19, 10278–10286 (2011). [CrossRef] [PubMed]
  23. P. Laurent, M. Abgrall, C. Jentsch, P. Lemonde, G. Santarelli, A. Clairon, I. Maksimovic, S. Bize, C. Salomon, D. Blonde, J. Vega, O. Grosjean, F. Picard, M. Saccoccio, M. Chaubet, N. Ladiette, L. Guillet, I. Zenone, C. Delaroche, and C. Sirmain, “Design of the cold atom PHARAO space clock and initial test results,” Appl. Phys. B84, 683–690 (2006). [CrossRef]
  24. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31, 97–105 (1983). [CrossRef]
  25. The USL is a high-finesse FP cavity stabilized laser at 1.54μm described in [9]. The fractional frequency stability is 1 × 10−15 at 1s dominated by the thermal noise limit (all-ULE cavity).
  26. S. Dawkins, R. Chicireanu, M. Petersen, J. Millo, D. Magalhães, C. Mandache, Y. Le Coq, and S. Bize, “An ultra-stable referenced interrogation system in the deep ultraviolet for a mercury optical lattice clock,” Appl. Phys. B99, 41–46 (2010). [CrossRef]
  27. J. J. McFerran, D. V. Magalhaes, C. Mandache, J. Millo, W. Zhang, Y. Le Coq, G. Santarelli, and S. Bize, “Laser locking to the 199Hg 1S0-3P0 clock transition with 5.4×10−15/τ fractional frequency instability,” Opt. Lett.37, 3477–3479 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited