OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25441–25453

Optimal light harvesting structures at optical and infrared frequencies

F. Villate-Guío, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and F. de León-Pérez  »View Author Affiliations


Optics Express, Vol. 20, Issue 23, pp. 25441-25453 (2012)
http://dx.doi.org/10.1364/OE.20.025441


View Full Text Article

Enhanced HTML    Acrobat PDF (1304 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

One-dimensional light harvesting structures with a realistic geometry nano-patterned on an opaque metallic film are optimized to render high transmission efficiencies at optical and infrared frequencies. Simple design rules are developed for the particular case of a slit-groove array with a given number of grooves that are symmetrically distributed with respect to a central slit. These rules take advantage of the hybridization of Fabry-Perot modes in the slit and surface modes of the corrugated metal surface. Same design rules apply for optical and infrared frequencies. The parameter space of the groove array is also examined with a conjugate gradient optimization algorithm that used as a seed the geometries optimized following physical intuition. Both uniform and nonuniform groove arrays are considered. The largest transmission enhancement, with respect to a uniform array, is obtained for a chirped groove profile. Such relative enhancement is a function of the wavelength. It decreases from 39 % in the optical part of the spectrum to 15 % at the long wavelength infrared.

© 2012 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1960) Diffraction and gratings : Diffraction theory
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 25, 2012
Revised Manuscript: September 2, 2012
Manuscript Accepted: September 6, 2012
Published: October 25, 2012

Citation
F. Villate-Guío, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and F. de León-Pérez, "Optimal light harvesting structures at optical and infrared frequencies," Opt. Express 20, 25441-25453 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-23-25441


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature (London)445, 39–46 (2007). [CrossRef]
  2. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010). [CrossRef]
  3. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305, 847–848 (2004). [CrossRef] [PubMed]
  4. T. Thio, K. M. Pellegrin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett.26, 1972–1974 (2001). [CrossRef]
  5. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90, 213901 (2003). [CrossRef] [PubMed]
  6. T. Ishi, J. Fujikata, and K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys.44, L170–L172 (2005). [CrossRef]
  7. L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martín-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett.95, 011113 (2009). [CrossRef]
  8. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13, 429–432 (2002). [CrossRef]
  9. A. Degiron and T. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express12, 3694–3700 (2004). [CrossRef] [PubMed]
  10. O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett.99, 043902 (2007). [CrossRef] [PubMed]
  11. H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved lengths,” Appl. Phys. Lett.91, 093111 (2007). [CrossRef]
  12. J. Lu, C. Petre, E. Yablonovitch, and J. Conway, “Numerical optimization of a grating coupler for the efficient excitation of surface plasmons at an ag-sio2 interface,” J. Opt. Soc. Am. B24, 2268–2272 (2007). [CrossRef]
  13. Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett.92, 011128 (2008). [CrossRef]
  14. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics2, 161–164 (2008). [CrossRef]
  15. S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19, 10429–10442 (2011). [CrossRef]
  16. W. Suetaka, Surface Infrared and Raman Spectroscopy - Methods and Applications (Kluwer Academic Publishers, 1995).
  17. J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and J. K. R. Rodrigues, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Ann. Rev. Phys. Chem.59, 179–202 (2008). [CrossRef]
  18. K.-L. Lee, S.-H. Wu, C.-W. Lee, and P.-K. Wei, “Sensitive biosensors using fano resonance in single gold nanoslit with periodic grooves,” Opt. Express19, 24530–24539 (2011). [CrossRef] [PubMed]
  19. K. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett.31, 1528–1530 (2006). [CrossRef] [PubMed]
  20. A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, and J. H. Connor, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A.108, 11784–11789 (2011). [CrossRef] [PubMed]
  21. R. Stanley, “Plasmonics in the mid-infrared,” Nat. Photonics6, 409–411 (2012). [CrossRef]
  22. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77, 2nd ed. (Cambridge University Press, New York, 1986).
  23. J. D. Jackson, Classical Electrodynamics, 3rd ed (John Wiley, New York, 1999).
  24. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3, 324–328 (2007). [CrossRef]
  25. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys.10, 033035 (2008). [CrossRef]
  26. K. Ishihara, G. Hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, “Terahertz wave enhanced transmission through a single subwavelength aperture with periodic surface structures,” Jpn. J. Appl. Phys.44, L1005–L1007 (2005). [CrossRef]
  27. K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J.-I. Shikata, and H. Ito, “Therahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett.89, 201120 (2006). [CrossRef]
  28. D. Lin, C. Chang, Y. Chen, D. Yang, M. Lin, J. Yeh, J. Liu, C. Kuan, C. Yeh, and C. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express14, 3503–3511 (2006). [CrossRef] [PubMed]
  29. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic, London, 1985).
  31. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  32. F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Normal-incidence scattering of surface plasmon polaritons by one-dimensional nanoindentations: a multimodal description,” Appl. Phys. A89, 251–258 (2007). [CrossRef]
  33. F. de León-Pérez, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys.10, 105017 (2008). [CrossRef]
  34. F. López-Tejeira, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B72, 161405(R) (2005). [CrossRef]
  35. R. F. Harrington and D. T. Auckland, “Electromagnetic transmission through narrow slots in thick conducting screens,” IEEE Trans. Antennas Propag.AP-28, 616–622 (1980). [CrossRef]
  36. F. de León-Pérez, F. J. García-Vidal, and L. Martín-Moreno, “Role of surface plasmon polaritons in the optical response of a hole pair,” Phys. Rev. B84, 125414 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited