OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25471–25477

A new lower bound below the information rate of Wiener phase noise channel based on Kalman carrier recovery

Luca Barletta, Maurizio Magarini, and Arnaldo Spalvieri  »View Author Affiliations

Optics Express, Vol. 20, Issue 23, pp. 25471-25477 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (678 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new lower bound below the information rate transferred through the Additive White Gaussian Noise (AWGN) channel affected by discrete-time multiplicative Wiener’s phase noise is proposed in the paper. The proposed lower bound is based on the Kalman approach to data-aided carrier phase recovery, and is less computationally demanding than known methods based on phase quantization and trellis representation of phase’s memory. Simulation results show that the lower bound is close to the actual channel capacity, especially at low-to-intermediate signal-to-noise ratio.

© 2012 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.4080) Fiber optics and optical communications : Modulation
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 23, 2012
Revised Manuscript: October 5, 2012
Manuscript Accepted: October 8, 2012
Published: October 25, 2012

Luca Barletta, Maurizio Magarini, and Arnaldo Spalvieri, "A new lower bound below the information rate of Wiener phase noise channel based on Kalman carrier recovery," Opt. Express 20, 25471-25477 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. J. Foschini and G. Vannucci, “Characterizing filtered light waves corrupted by phase noise,” IEEE Trans. Inform. Theory 6, 1437–1448 (1988). [CrossRef]
  2. M. Magarini, A. Spalvieri, F. Vacondio, M. Bertolini, M. Pepe, and G. Gavioli, “Empirical modeling and simulation of phase noise in long-haul coherent optical systems,” Opt. Express 23, 22455–22461 (2011). [CrossRef]
  3. M. Peleg, S. Shamai (Shitz), and S. Galan, “Iterative decoding for coded noncoherent MPSK communications over phase-noisy AWGN channel,” Proc. IEE Commun. 2, 87–95 (2000). [CrossRef]
  4. G. Colavolpe, A. Barbieri, and G. Caire, “Algorithms for iterative decoding in the presence of strong phase noise,” IEEE J. Sel. Areas Commun. 9, 1748–1757 (2005). [CrossRef]
  5. A. Barbieri and G. Colavolpe, “Soft-output decoding of rotationally invariant codes over channels with phase noise,” IEEE Trans. on Commun. 11, 2125–2133 (2007). [CrossRef]
  6. L. Barletta, M. Magarini, and A. Spalvieri, “Staged demodulation and decoding,” Opt. Express 20, 23728–23734 (2012). [CrossRef]
  7. A. Spalvieri and L. Barletta, “Pilot-aided carrier recovery in the presence of phase noise,” IEEE Trans. Commun. 7, 1966–1974 (2011). [CrossRef]
  8. M. Magarini, L. Barletta, A. Spalvieri, F. Vacondio, T. Pfau, M. Pepe, M. Bertolini, and G. Gavioli, “Pilot-symbols-aided carrier-phase recovery for 100-G PM-QPSK digital coherent receivers,” IEEE Photon. Tech. Lett. 9, 739–741 (2012). [CrossRef]
  9. B. Goebel, R.-J. Essiambre, G. Kramer, P. J. Winzer, and N. Hanik, “Calculation of mutual information for partially coherent Gaussian channels with application to fiber optics,” IEEE Trans. Inf. Theory 9, 5720–5736 (2011). [CrossRef]
  10. P. Hou, B. J. Belzer, and T. R. Fischer, “Shaping gain of the partially coherent additive white Gaussian noise channel,” IEEE Commun. Lett. 5, 175–177 (2002).
  11. D. M. Arnold, H.-A. Loeliger, P. O. Vontobel, A. Kavcic, and W. Zeng, “Simulation-based computation of information rates for channels with memory,” IEEE Trans. Inf. Theory 8, 3498–3508 (2006). [CrossRef]
  12. I. B. Djordjevic, B. Vasic, M. Ivkovic, and I. Gabitov, “Achievable information rates fot high-speed long-haul optical transmission,” IEEE J. Lightw. Technol. 11, 3755–3763 (2005). [CrossRef]
  13. J. Dauwels and H.-A. Loeliger, “Computation of information rates by particle methods,” IEEE Trans. Inf. Theory 1, 406–409 (2008). [CrossRef]
  14. L. Barletta, M. Magarini, and A. Spalvieri, “Estimate of information rates of discrete-time first-order Markov phase noise channels,” IEEE Photon. Tech. Lett. 21, 1582–1584 (2011). [CrossRef]
  15. A. Barbieri and G. Colavolpe, “On the information rate and repeat-accumulate code design for phase noise channels,” IEEE Trans. on Commun. 12, 3223–3228 (2011). [CrossRef]
  16. L. Barletta, M. Magarini, and A. Spalvieri, “The information rate transferred through the discrete-time Wiener’s phase noise channel,” IEEE J. Lightw. Technol. 30, 1480–1486 (2012). [CrossRef]
  17. D. Simon, Optimal State Estimation (Wiley, 2006). [CrossRef]
  18. A. Patapoutian, “On phase-locked loops and Kalman filters,” IEEE Trans. Commun. 5,, 670–672 (1999). [CrossRef]
  19. A. Spalvieri and M. Magarini, “Wiener’s analysis of the discrete-time phase-locked loop with loop delay,” IEEE Trans. Circuits Syst. II, Exp. Briefs, 12, 596–600 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited