OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25478–25488

Variable carrier reduction in radio-over-fiber systems for increased modulation efficiency using a Si3N4 tunable extinction ratio ring resonator

Andreas Perentos, Francisco Cuesta-Soto, Manuel Rodrigo, Antonio Canciamilla, Borja Vidal, Luigi Pierno, Amadeu Griol, N. S. Losilla, Laurent Bellieres, Francisco Lopez-Royo, Andrea Melloni, and Stavros Iezekiel  »View Author Affiliations

Optics Express, Vol. 20, Issue 23, pp. 25478-25488 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2141 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Variable optical carrier reduction via the use of a Si3N4 ring resonator notch filter with tunable extinction ratio is demonstrated in a 10 GHz radio-over-fiber system for improving the modulation efficiency. The extinction of the filter notch is tuned with micro-heaters, by setting the Mach-Zehnder coupler of the ring. Experimental results showing a modulation depth improvement of up to 20 dB are provided.

© 2012 OSA

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(230.5750) Optical devices : Resonators
(060.5625) Fiber optics and optical communications : Radio frequency photonics
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 30, 2012
Revised Manuscript: September 8, 2012
Manuscript Accepted: September 9, 2012
Published: October 25, 2012

Andreas Perentos, Francisco Cuesta-Soto, Manuel Rodrigo, Antonio Canciamilla, Borja Vidal, Luigi Pierno, Amadeu Griol, N. S. Losilla, Laurent Bellieres, Francisco Lopez-Royo, Andrea Melloni, and Stavros Iezekiel, "Variable carrier reduction in radio-over-fiber systems for increased modulation efficiency using a Si3N4 tunable extinction ratio ring resonator," Opt. Express 20, 25478-25488 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, Ka-Lun Lee, D. Yizhuo Yang, Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol.28(4), 390–405 (2010). [CrossRef]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007). [CrossRef]
  3. N. Gomes, M. Morant, A. Alphones, B. Cabon, J. Mitchell, C. Lethien, M. Csörnyei, A. Stöhr, and S. Iezekiel, “Radio-over-fiber transport for the support of wireless broadband services [Invited],” J. Opt. Netw.8(2), 156–178 (2009). [CrossRef]
  4. K. J. Williams and R. D. Esman, “Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency,” Electron. Lett.30(23), 1965–1966 (1994). [CrossRef]
  5. S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, G. Charlet, and J. Chazelas, “Stimulated Brillouin scattering for microwave signal modulation depth increase in optical links,” Electron. Lett.36(11), 944–946 (2000). [CrossRef]
  6. B. Hraimel, X. Zhang, Y. Pei, K. Wu, T. Liu, T. Xu, and Q. Nie, “Optical single-sideband modulation with tunable optical carrier to sideband ratio in radio over fiber systems,” J. Lightwave Technol.29(5), 775–781 (2011). [CrossRef]
  7. M. J. LaGasse, W. Charczenko, M. C. Hamilton, and S. Thaniyavarn, “Optical carrier filtering for high dynamic range fiber optic links,” Electron. Lett.30(25), 2157–2158 (1994). [CrossRef]
  8. R. D. Esman and K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photon. Technol. Lett.7(2), 218–220 (1995). [CrossRef]
  9. M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett.17(1), 190–192 (2005). [CrossRef]
  10. C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microw. Theory Tech.54(5), 2181–2187 (2006). [CrossRef]
  11. H. Toda, T. Yamashita, T. Kuri, and K. Kitayama, “25-GHz channel spacing DWDM multiplexing using an arrayed waveguide grating for 60-GHz band radio-on-fiber systems,” in Proceedings of IEEE Microwave Photonics MWP2003, (Budapest, Hungary, 2003), 287–290.
  12. T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” J. Lightwave Technol.24(5), 2207–2218 (2006). [CrossRef]
  13. C. Ferrari, A. Canciamilla, F. Morichetti, M. Sorel, and A. Melloni, “Penalty-free transmission in a silicon coupled resonator optical waveguide over the full C-band,” Opt. Lett.36(19), 3948–3950 (2011). [CrossRef] [PubMed]
  14. I. Gasulla, J. Lloret, J. Sancho, S. Sales, and J. Capmany, “Recent breakthroughs in microwave photonics,” IEEE Photon. J.3(2), 311–315 (2011).
  15. J. Capmany, I. Gasulla, and S. Sales, “Microwave photonics: harnessing slow light,” Nat. Photonics5(12), 731–733 (2011). [CrossRef]
  16. T. K. Woodward, A. Agarwal, T. Banwell, P. Toliver, B. J. Luff, D. Feng, P. Dong, D. C. Lee, N.-N. Feng, and M. Asghari, “Systems perspectives on optically-assisted RF signal processing using silicon photonics,” in Proceedings of IEEE Microwave Photonics MWP2011, (Singapore, Singapore, 2011), 377–380.
  17. C. Kopp, S. Bernabé, B. B. Bakir, J. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron.17(3), 498–509 (2011). [CrossRef]
  18. D. Guckenberger, “Microwave photonic applications for silicon photonics,” in Proceedings of Optical Fiber Communication OSA/OFC/NFOEC 2009, (Los Angeles, CA, USA, 2009), 1–3.
  19. L. Xu, C. Li, C. W. Chow, and H. K. Tsang, “Optical mm-wave signal generation by frequency quadrupling using an optical modulator and a silicon microresonator filter,” IEEE Photon. Technol. Lett.21(4), 209–211 (2009). [CrossRef]
  20. W. Green, R. Lee, G. Derose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control,” Opt. Express13(5), 1651–1659 (2005). [CrossRef] [PubMed]
  21. C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express15(8), 5069–5076 (2007). [CrossRef] [PubMed]
  22. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).
  23. R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett.15(10), 1366–1368 (2003). [CrossRef]
  24. T. Barwicz, M. Popović, P. Rakich, M. Watts, H. Haus, E. Ippen, and H. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express12(7), 1437–1442 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited