OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25520–25529

Collimation effect inside complete bandgap of electromagnetic surface resonance states on a metal plate perforated with a triangular array of air holes

Yang Cao, Zeyong Wei, Chao Wu, Hongqiang Li, Hong Chen, and Kun Cai  »View Author Affiliations


Optics Express, Vol. 20, Issue 23, pp. 25520-25529 (2012)
http://dx.doi.org/10.1364/OE.20.025520


View Full Text Article

Enhanced HTML    Acrobat PDF (3507 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper the transmission properties of a metal plate perforated with a triangular array of air holes is investigated. We find that the normalized transmittivity exceeds unity within a certain frequency range under normal incidence of a Gaussian beam. Calculations and experiments indicate that the phenomenon results from the collimation effect which only occurs inside the complete bandgap of surface resonance states on the perforated metal plate. The findings present a simple approach for beam collimation.

© 2012 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 27, 2012
Revised Manuscript: October 6, 2012
Manuscript Accepted: October 8, 2012
Published: October 25, 2012

Citation
Yang Cao, Zeyong Wei, Chao Wu, Hongqiang Li, Hong Chen, and Kun Cai, "Collimation effect inside complete bandgap of electromagnetic surface resonance states on a metal plate perforated with a triangular array of air holes," Opt. Express 20, 25520-25529 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-23-25520


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998). [CrossRef]
  3. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett.86(6), 1114–1117 (2001). [CrossRef] [PubMed]
  4. G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. J. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett.96(21), 213901 (2006). [CrossRef] [PubMed]
  5. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature452(7188), 728–731 (2008). [CrossRef] [PubMed]
  6. F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007). [CrossRef]
  7. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82(1), 729–787 (2010). [CrossRef]
  8. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin, 1988).
  9. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  10. A. Brecht and G. Gauglitz, “Optical probes and transducers,” Biosens. Bioelectron.10(9-10), 923–936 (1995). [CrossRef] [PubMed]
  11. J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: simulation and experiment,” J. Phys. Chem. C111(36), 13372–13377 (2007). [CrossRef]
  12. M. Derouard, J. Hazart, G. Lérondel, R. Bachelot, P. M. Adam, and P. Royer, “Polarization-sensitive printing of surface plasmon interferences,” Opt. Express15(7), 4238–4246 (2007). [CrossRef] [PubMed]
  13. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004). [CrossRef] [PubMed]
  14. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science308(5722), 670–672 (2005). [CrossRef] [PubMed]
  15. Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006). [CrossRef] [PubMed]
  16. W. J. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B72(15), 153406 (2005). [CrossRef]
  17. D. X. Qu, D. Grischkowsky, and W. L. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett.29(8), 896–898 (2004). [CrossRef] [PubMed]
  18. A. K. Azad and W. L. Zhang, “Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness,” Opt. Lett.30(21), 2945–2947 (2005). [CrossRef] [PubMed]
  19. M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, “Enhanced millimeter-wave transmission through subwavelength hole arrays,” Opt. Lett.29(21), 2500–2502 (2004). [CrossRef] [PubMed]
  20. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter54(9), 6227–6244 (1996). [CrossRef] [PubMed]
  21. P. Andrew, S. C. Kitson, and W. L. Barnes, “Surface-plasmon energy gaps and photoabsorption,” J. Mod. Opt.44(2), 395–406 (1997). [CrossRef]
  22. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett.86(14), 3008–3011 (2001). [CrossRef] [PubMed]
  23. M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors,” Phys. Rev. B73(15), 155416 (2006). [CrossRef]
  24. M. U. González, A. L. Stepanov, J. C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett.32(18), 2704–2706 (2007). [CrossRef] [PubMed]
  25. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Graded photonic crystal terahertz quantum cascade lasers,” Appl. Phys. Lett.96(3), 031104 (2010). [CrossRef]
  26. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett.77(13), 2670–2673 (1996). [CrossRef] [PubMed]
  27. P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations,” Phys. Rev. B26(6), 2907–2916 (1982). [CrossRef]
  28. Z. Y. Wei, J. X. Fu, Y. Cao, C. Wu, and H. Q. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostructures8(2), 94–101 (2010). [CrossRef]
  29. Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011). [CrossRef]
  30. Z. Y. Wei, Y. Cao, Y. C. Fan, X. Yu, and H. Q. Li, “Broadband transparency achieved with the stacked metallic multi-layers perforated with coaxial annular apertures,” Opt. Express19(22), 21425–21431 (2011). [CrossRef] [PubMed]
  31. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt.2(1), 48–51 (2000). [CrossRef]
  32. J. D. Jackson, Classical electrodynamics (Wiley, New York, 1998).
  33. A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method, 2nd ed. (MA: Artech House, Norwood, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited