OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25530–25535

Terahertz photoconductive antenna with metal nanoislands

Sang-Gil Park, Yongje Choi, Young-Jae Oh, and Ki-Hun Jeong  »View Author Affiliations

Optics Express, Vol. 20, Issue 23, pp. 25530-25535 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1105 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work presents a nanoplasmonic photoconductive antenna (PCA) with metal nanoislands for enhancing terahertz (THz) pulse emission. The whole photoconductive area was fully covered with metal nanoislands by using thermal dewetting of thin metal film at relatively low temperature. The metal nanoislands serve as plasmonic nanoantennas to locally enhance the electric field of an ultrashort pulsed pump beam for higher photocarrier generation. The plasmon resonance of metal nanoislands was achieved at an excitation laser wavelength by changing the initial thickness of metal film. This nanoplasmonic PCA shows two times higher enhancement for THz pulse emission power than a conventional PCA. This work opens up a new opportunity for plasmon enhanced large-aperture THz photoconductive antennas.

© 2012 OSA

OCIS Codes
(040.5150) Detectors : Photoconductivity
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures
(110.6795) Imaging systems : Terahertz imaging

ToC Category:

Original Manuscript: August 30, 2012
Revised Manuscript: October 20, 2012
Manuscript Accepted: October 20, 2012
Published: October 25, 2012

Sang-Gil Park, Yongje Choi, Young-Jae Oh, and Ki-Hun Jeong, "Terahertz photoconductive antenna with metal nanoislands," Opt. Express 20, 25530-25535 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007). [CrossRef]
  2. E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys.39(17), R301–R310 (2006). [CrossRef]
  3. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express11(20), 2549–2554 (2003). [CrossRef] [PubMed]
  4. N. Nagai, R. Kumazawa, and R. Fukasawa, “Direct evidence of inter-molecular vibrations by THz spectroscopy,” Chem. Phys. Lett.413(4-6), 495–500 (2005). [CrossRef]
  5. M. Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett.14(20), 1128–1130 (1989). [CrossRef] [PubMed]
  6. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol.47(21), 3853–3863 (2002). [CrossRef] [PubMed]
  7. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt.36(30), 7853–7859 (1997). [CrossRef] [PubMed]
  8. Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett.83(15), 3117–3119 (2003). [CrossRef]
  9. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett.86(12), 121114 (2005). [CrossRef]
  10. B. Pradarutti, R. Müller, W. Freese, G. Matthäus, S. Riehemann, G. Notni, S. Nolte, and A. Tünnermann, “Terahertz line detection by a microlens array coupled photoconductive antenna array,” Opt. Express16(22), 18443–18450 (2008). [CrossRef] [PubMed]
  11. S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, “Enhancement of terahertz pulse emission by optical nanoantenna,” ACS Nano6(3), 2026–2031 (2012). [CrossRef] [PubMed]
  12. C. W. Berry and M. Jarrahi, “Plasmonically-enhanced localization of light into photoconductive antennas,” Proc. Conf. Lasers and Electro-Optics, CFI2 (2010)
  13. H. Tanoto, J. Teng, Q. Wu, M. Sun, Z. Chen, S. Maier, B. Wang, C. Chum, G. Si, A. Danner, and S. J. Chua, “Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer,” Nat. Photonics6(2), 121–126 (2012). [CrossRef]
  14. A. Geissler, M. He, J.-M. Benoit, and P. Petit, “Effect of hydrogen pressure on the size of nickel nanoparticles formed during dewetting and reduction of thin nickel films,” J. Phys. Chem. C114(1), 89–92 (2010). [CrossRef]
  15. Y.-J. Oh and K.-H. Jeong, “Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering,” Adv. Mater. (Deerfield Beach Fla.)24(17), 2234–2237 (2012). [CrossRef] [PubMed]
  16. S. Yang, F. Xu, S. Ostendorp, G. Wilde, H. Zhao, and Y. Lei, “Template-confined dewetting process to surface nanopatterns: fabrication, structural tunability, and structure-related properties,” Adv. Funct. Mater.21(13), 2446–2455 (2011). [CrossRef]
  17. K. W. Vogt and P. A. Kohl, “Gallium arsenide passivation through nitridation with hydrazine,” J. Appl. Phys.74(10), 6448–6450 (1993). [CrossRef]
  18. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev.4(6), 795–808 (2010). [CrossRef]
  19. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  20. F. Stietz, J. Bosbach, T. Wenzel, T. Vartanyan, A. Goldmann, and F. Trager, “Decay times of surface plasmon excitation in metal nanoparticles by persistent spectral hole burning,” Phys. Rev. Lett.84(24), 5644–5647 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited