OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25554–25561

High efficiency, resonantly diode pumped, double-clad, Er:YAG-core, waveguide laser

N. Ter-Gabrielyan, V. Fromzel, X. Mu, H. Meissner, and M. Dubinskii  »View Author Affiliations


Optics Express, Vol. 20, Issue 23, pp. 25554-25561 (2012)
http://dx.doi.org/10.1364/OE.20.025554


View Full Text Article

Enhanced HTML    Acrobat PDF (2569 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the highly efficient, resonantly diode-pumped Er:YAG-core, double-clad, all-crystalline eye-safe waveguide laser. A 500 × 500 μm Er3+(1%):YAG single-crystalline core with an ultra low numerical aperture (NA) of ~0.02 was surrounded by a 700 × 700 μm undoped single-crystalline YAG cladding. The entire Er:YAG/YAG core/clad structure was over-clad by transparent magnesium aluminum spinel (MgAl2O4) ceramic. The waveguide was continuously (CW) clad-pumped by a spectrally-narrowed, fiber-coupled InGaAsP/InP laser diode module at ~1532 nm. We achieved 25.4 W of output power at 1645 nm with a beam quality of M2 ~2.6. The achieved 56.6% slope efficiency with respect to the absorbed pump was derived by factoring out scattering loss of the pump light in the inner cladding. With a wavelength-selective cavity, the waveguide laser delivered ~8 W of output power at 1616.6 nm. To the best of our knowledge, it is the first reported laser experiment with a crystalline Er3+:YAG-core and a truly double-clad crystalline waveguide structure.

© 2012 OSA

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 20, 2012
Revised Manuscript: October 17, 2012
Manuscript Accepted: October 19, 2012
Published: October 25, 2012

Citation
N. Ter-Gabrielyan, V. Fromzel, X. Mu, H. Meissner, and M. Dubinskii, "High efficiency, resonantly diode pumped, double-clad, Er:YAG-core, waveguide laser," Opt. Express 20, 25554-25561 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-23-25554


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Snitzer, “Optical maser action of Nd3+ in a barium crown glass,” Phys. Rev. Lett.7(12), 444–446 (1961). [CrossRef]
  2. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express16(17), 13240–13266 (2008). [CrossRef] [PubMed]
  3. R. S. Feigelson, W. L. Kway, and R. K. Route, “Single-Crystal Fibers by the Laser-Heated Pedestal Growth Method,” Opt. Eng.24, 1102–1107 (1985).
  4. D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J.-M. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009). [CrossRef]
  5. C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-Average-Power 1-μm Performance and Frequency Conversion of a Diode-End-Pumped Yb:YAG Laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998). [CrossRef]
  6. C.-Y. Lo, K.-Y. Huang, J.-C. Chen, S.-Y. Tu, and S.-L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Opt. Lett.29(5), 439–441 (2004). [CrossRef] [PubMed]
  7. C.-C. Lai, C.-P. Ke, S.-K. Liu, D.-Y. Jheng, D.-J. Wang, M.-Y. Chen, Y.-S. Li, P. S. Yeh, and S.-L. Huang, “Efficient and low-threshold Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett.36(6), 784–786 (2011). [CrossRef] [PubMed]
  8. R. J. Beach, S. C. Mitchell, H. E. Meissner, O. R. Meissner, W. F. Krupke, J. M. McMahon, W. J. Bennett, and D. P. Shepherd, “Continuous-wave and passive Q-switched cladding-pumped planar waveguide lasers,” Opt. Lett.26(12), 881–883 (2001). [CrossRef] [PubMed]
  9. U. Griebner and H. Schönnagel, “Laser operation with nearly diffraction-limited output from a Yb:YAG multimode channel waveguide,” Opt. Lett.24(11), 750–752 (1999). [CrossRef] [PubMed]
  10. J. I. Mackenzie and D. P. Shepherd, “End-pumped, passively Q-switched Yb:YAG double-clad waveguide laser,” Opt. Lett.27(24), 2161–2163 (2002). [CrossRef] [PubMed]
  11. X. Mu, H. Meissner, H.-C. Lee, and M. Dubinskii, “True Crystalline Fibers: Double-Clad LMA Design Concept of Tm:YAG-Core Fiber and Mode Simulation,” Proc. SPIE8237, 82373M (2012). [CrossRef]
  12. http://refractiveindex.info/?group=CRYSTAL&material=Y3Al5O12 .
  13. Y. Sato and T. Taira, “Saturation factors of pump absorption in solid-state lasers,” IEEE J. Quantum Electron.40(3), 270–280 (2004). [CrossRef]
  14. J. Mackenzie, “An efficient high-power 946 nm Nd:YAG planar waveguide laser,” Appl. Phys. B97(2), 297–306 (2009). [CrossRef]
  15. X. Délen, S. Piehler, J. Didierjean, N. Aubry, A. Voss, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250 W single-crystal fiber Yb:YAG laser,” Opt. Lett.37(14), 2898–2900 (2012). [CrossRef] [PubMed]
  16. K. Spariosu, V. Leyva, R. A. Reeder, and M. J. Klotz, “Efficient Er:YAG Laser Operating at 1645 and 1617 nm,” IEEE J. Quantum Electron.42(2), 182–186 (2006). [CrossRef]
  17. S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, “Resonantly pumped eyesafe erbium,” IEEE J. Sel. Top. Quantum Electron.11(3), 645–657 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited