OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25693–25699

Improvement of photon correlation spectroscopy method for measuring nanoparticle size by using attenuated total reflectance

Victor Krishtop, Ivan Doronin, and Konstantin Okishev  »View Author Affiliations


Optics Express, Vol. 20, Issue 23, pp. 25693-25699 (2012)
http://dx.doi.org/10.1364/OE.20.025693


View Full Text Article

Enhanced HTML    Acrobat PDF (947 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photon correlation spectroscopy is an effective method for measuring nanoparticle sizes and has several advantages over alternative methods. However, this method suffers from a disadvantage in that its measuring accuracy reduces in the presence of convective flows of fluid containing nanoparticles. In this paper, we propose a scheme based on attenuated total reflectance in order to reduce the influence of convection currents. The autocorrelation function for the light-scattering intensity was found for this case, and it was shown that this method afforded a significant decrease in the time required to measure the particle sizes and an increase in the measuring accuracy.

© 2012 OSA

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(290.0290) Scattering : Scattering
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Spectroscopy

History
Original Manuscript: August 8, 2012
Revised Manuscript: October 12, 2012
Manuscript Accepted: October 22, 2012
Published: October 29, 2012

Citation
Victor Krishtop, Ivan Doronin, and Konstantin Okishev, "Improvement of photon correlation spectroscopy method for measuring nanoparticle size by using attenuated total reflectance," Opt. Express 20, 25693-25699 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-23-25693


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y.-C. Yeh, B. Creran, and V. M. Rotello, “Gold nanoparticles: preparation, properties, and applications in bionanotechnology,” Nanoscale4(6), 1871–1880 (2012). [CrossRef] [PubMed]
  2. Y. N. Kulchin, A. V. Bezverbny, O. A. Bukin, S. S. Voznesensky, S. S. Golik, A. Y. Mayor, Y. A. Shchipunov, and I. G. Nagorny, “Nonlinear optical properties of biomineral and biomimetical nanocomposite structures,” Laser Phys.21(3), 630–636 (2011). [CrossRef]
  3. M. De, P. S. Ghosh, and V. M. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. (Deerfield Beach Fla.)20(22), 4225–4241 (2008). [CrossRef]
  4. V. Rotello, Nanoparticle: Building Blocks for Nanotechnology (Springer, 2004).
  5. F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, and P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano5(1), 413–423 (2011). [CrossRef] [PubMed]
  6. L. Xiao, L. Gu, S. B. Howell, and M. J. Sailor, “Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells,” ACS Nano5(5), 3651–3659 (2011). [CrossRef] [PubMed]
  7. R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, and A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C115(12), 5102–5107 (2011). [CrossRef]
  8. D. Kovalev and M. Fujii, “Silicon nanocrystals: photosensitizers for oxygen molecules,” Adv. Mater. (Deerfield Beach Fla.)17(21), 2531–2544 (2005). [CrossRef]
  9. M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, and H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem.19(33), 5926–5933 (2009). [CrossRef]
  10. T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express2(3), 261–268 (2012). [CrossRef]
  11. R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, and F. Brandi, “Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications,” Opt. Mater. Express2(5), 510–518 (2012). [CrossRef]
  12. D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100(20), 201113 (2012). [CrossRef]
  13. H. Alaeian and J. A. Dionne, “Plasmon nanoparticle superlattices as optical-frequency magnetic metamaterials,” Opt. Express20(14), 15781–15796 (2012). [CrossRef] [PubMed]
  14. F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano6(3), 2056–2070 (2012). [CrossRef] [PubMed]
  15. B. Carl Englert, “Nanomaterials and the environment: uses, methods and measurement,” J. Environ. Monit.9(11), 1154–1161 (2007). [CrossRef] [PubMed]
  16. N. A. Zharova, I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Nonlinear control of invisibility cloaking,” Opt. Express20(14), 14954–14959 (2012). [CrossRef] [PubMed]
  17. C.-H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express16(13), 9580–9586 (2008). [CrossRef] [PubMed]
  18. J.-H. Park, C. Park, H. Yu, Y.-H. Cho, and Y. K. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express20(15), 17010–17016 (2012). [CrossRef]
  19. J. Qian, Z. Chen, J. Chen, Yu. Li, J. Xu, and Q. Sun, “Two-dimensional angularly selective optical properties of gold nanoshell with holes,” Opt. Express20(13), 14614–14620 (2012). [CrossRef] [PubMed]
  20. K. Maaz, The Transmission Electron Microscope (InTech, 2012).
  21. V. Bellitto, Atomic Force Microscopy - Imaging, Measuring and Manipulating Surfaces at the Atomic Scale (InTech, 2012)
  22. B. Ruozi, G. Tosi, M. Tonelli, L. Bondioli, A. Mucci, F. Forni, and M. A. Vandelli, “AFM phase imaging of soft-hydrated samples: A versatile tool to complete the chemical-physical study of liposomes,” J. Liposome Res.19(1), 59–67 (2009). [CrossRef] [PubMed]
  23. B. Apter, O. Guilatt, and U. Efron, “Ring-type plasmon resonance in metallic nanoshells,” Appl. Opt.50(28), 5457–5464 (2011). [CrossRef] [PubMed]
  24. K. Drozdowicz-Tomsia, H. T. Baltar, and E. M. Goldys, “Dense two-dimensional silver single and double nanoparticle arrays with plasmonic response in wide spectral range,” Langmuir28(24), 9071–9081 (2012). [CrossRef] [PubMed]
  25. S.-M. Guo, J. He, N. Monnier, G. Sun, T. Wohland, and M. Bathe, “Bayesian approach to the analysis of fluorescence correlation spectroscopy data II: Application to simulated and in vitro data,” Anal. Chem.84(9), 3880–3888 (2012). [CrossRef] [PubMed]
  26. W. Brown, Dynamic Light Scattering: The Method and Some Applications (Clarendon Press, 1993).
  27. E. R. Pike and J. B. Abbiss, Light Scattering and Photon Correlation Spectroscopy (Kluwer Academic Publishers, 1997).
  28. J. A. Seo, H.-J. Kwon, H. K. Kim, and Y.-H. Hwang, “Nano-particle size measurement by photon correlation spectroscopy and dielectric loss spectroscopy,” in FLOW DYNAMICS: The Second International Conference on Flow Dynamics,” AIP Conf. Proc.832, 229–233 (2006). [CrossRef]
  29. J.-A. Seo, H.-J. Kwon, H. K. Kim, and Y.-H. Hwang, “In-situ size measurement of nano-sized colloidal particles,” J. Korean Phys. Soc.49(5), 1972–1976 (2006).
  30. X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, and Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc.130(9), 2780–2782 (2008). [CrossRef] [PubMed]
  31. W. R. Burghardt, M. Sikorski, A. R. Sandy, and S. Narayanan, “X-ray photon correlation spectroscopy during homogenous shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.85(2), 021402 (2012). [CrossRef]
  32. D. Salerno, D. Brogioli, F. Croccolo, R. Ziano, and F. Mantegazza, “Photon correlation spectroscopy with incoherent light,” Opt. Express19(27), 26416–26422 (2011). [CrossRef] [PubMed]
  33. V. I. Ivanov and K. N. Okishev, “Thermodiffusion mechanism of dynamic amplitude hologram recording in a two-component medium,” Tech. Phys. Lett.32(11), 967–968 (2006). [CrossRef]
  34. K. Okishev and I. Doronin, “Application of photon correlation spectroscopy for investigation of silica nanospheres suspension,” Bull. Sci. Res. 14, edited by V. Stroganov, Khabarovsk, Russia, FESTU, 4–8 (2010).
  35. K. N. Okishev, V. I. Ivanov, S. V. Kliment'ev, A. A. Kuzin, and A. I. Livashvili, “The thermal diffusion mechanism of the nonlinear absorbing in nanoparticle suspensions,” Atmos. Oceanic Opt.23(2), 106–107 (2010).
  36. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
  37. K. H. Lan, N. Ostrowsky, and D. Sornette, “Brownian dynamics close to a wall studied by photon correlation spectroscopy from an evanescent wave,” Phys. Rev. Lett.57(1), 17–20 (1986). [CrossRef] [PubMed]
  38. M. I. M. Feitosa and O. N. Mesquita, “Wall-drag effect on diffusion of colloidal particles near surfaces: a photon correlation study,” Phys. Rev. A44(10), 6677–6685 (1991). [CrossRef] [PubMed]
  39. M. Hosoda, K. Sakai, and K. Takagi, “Measurement of anisotropic Brownian motion near an interface by evanescent light-scattering spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(5), 62756280–62756685 (1998). [CrossRef]
  40. G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu, “Probing collective motions of terminally anchored polymers,” Science274(5295), 2041–2044 (1996). [CrossRef] [PubMed]
  41. M. A. Plum, W. Steffen, G. Fytas, W. Knoll, and B. Menges, “Probing dynamics at interfaces: resonance enhanced dynamic light scattering,” Opt. Express17(12), 10364–10371 (2009). [CrossRef] [PubMed]
  42. H. Z. Cummins and E. R. Pike, “Photon correlation and light beating spectroscopy,” NATO Advanced Study Institute Series, Volume B3 (Plenum Press, New York, 1974).
  43. M. von Smoluchowski, “Zur kinetischen theorie der brownschen molekularbe-wegung und der suspensionen,” Ann. Physik (Leipzig)21(326), 756–780 (1906). [CrossRef]
  44. A. Einstein, Investigations on the Theory of the Brownian Movement, (Dover Publications, Inc., 1956).
  45. S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys.15(1), 1–89 (1943). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited