OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25718–25743

Nonlinear distortion of optical pulses by self-produced free carriers in short or highly lossy silicon-based waveguides

Hagen Renner  »View Author Affiliations

Optics Express, Vol. 20, Issue 23, pp. 25718-25743 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1335 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An explicit analytical solution for the asymmetric attenuation of optical pulses by self-produced free carriers in silicon waveguides is derived. It allows us to quantify the pulse distortion and to calculate explicitly the free-carrier density and the nonlinear phase shifts caused by the Kerr effect and by free-carrier refraction. We show that omitting two-photon absorption (TPA) as a cause of attenuation and accounting only for free-carrier absorption (FCA) as done in the derivation appropriately models the pulse propagation in short or highly lossy silicon-based waveguides such as plasmonic waveguides with particular use for high-energy input pulses. Moreover, this formulation is also aimed at serving as a tool in discussing the role of FCA in its competition with TPA when used for continuum generation or pulse compression in low-loss silicon waveguides. We show that sech-shaped intensity pulses maintain their shape independently of the intensity or pulse width and self-induced FCA may act as an ideal limiter on them. Pulse propagation under self-induced free-carrier absorption exhibits some features of superluminal propagation such as fast or even backward travelling. We find that input pulses need to have a sufficiently steep front slope to be compressible at all and illustrate this with the FCA-induced pulse broadening for Lorentzian-shaped input pulses.

© 2012 OSA

OCIS Codes
(040.6040) Detectors : Silicon
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.5520) Ultrafast optics : Pulse compression
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Nonlinear Optics

Original Manuscript: August 17, 2012
Revised Manuscript: September 27, 2012
Manuscript Accepted: September 27, 2012
Published: October 30, 2012

Hagen Renner, "Nonlinear distortion of optical pulses by self-produced free carriers in short or highly lossy silicon-based waveguides," Opt. Express 20, 25718-25743 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Fathpour and B. Jalali (Eds.), Silicon Photonics for Telecommunications and Biomedicine (CRC Press, Taylor & Francis, Boca Raton, 2011). [CrossRef]
  2. L. Pavesi and D. J. Lockwood (Eds.), Silicon Photonics (Springer-Verlag, Berlin, 2004).
  3. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (John Wiley, West Sussex, 2004). [CrossRef]
  4. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-insulator spectral filters fabricated with CMOS technology,” IEEE J. Sel. Top. Quantum Electron.16, 33–44 (2010). [CrossRef]
  5. H. K. Tsang and Y. Liu, “Nonlinear optical properties of silicon waveguides,” Semicond. Sci. Technol.23, 064007 (2008). [CrossRef]
  6. A. R. Motamedi, A. H. Nejadmalayeri, A. Khilo, F. X. Kärtner, and E. P. Ippen, “Ultrafast nonlinear optical studies of silicon nanowaveguides,” Opt. Express20, 4085–4101 (2012). [CrossRef] [PubMed]
  7. P. Mehta, N. Healy, R. Slavik, R. Watts, J. Sparks, T. Day, P. Sazio, J. Badding, and A. Peacock, “Nonlinearities in silicon optical fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) OFC 2011, Los Angeles, (Optical Society of America, 2011), paper OThS3.
  8. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express16, 1300–1320 (2008). [CrossRef] [PubMed]
  9. P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett.93, 091114 (2008). [CrossRef]
  10. P. T. S. DeVore, D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Stimulated supercontinuum generation extends broadening limits in silicon,” Appl. Phys. Lett.100, 101111 (2012). [CrossRef]
  11. H. Renner, “Upper limit for the amplifiable Stokes power in saturated silicon waveguide Raman amplifiers,” in 7th International Conference on Group IV Photonics (GFP), Beijing, China, 1–3 Sept. 2010, paper P1.15.
  12. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in silicon waveguides,” Opt. Express12, 2774–2780 (2004). [CrossRef] [PubMed]
  13. T. K. Liang and H. K. Tsang, “Pulsed-pumped silicon-on-insulator waveguide Raman amplifier,” in Proceedings of International Conference on Group IV Photonics, 29 Sept.–1 Oct. 2004, paper WA4.
  14. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, “Net optical gain in a low loss silicon-oninsulator waveguide by stimulated Raman scattering” Opt. Express12, 4261–4267 (2004). [CrossRef] [PubMed]
  15. T. K. Liang and H. K. Tsang; “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett.84, 2745–2747 (2004). [CrossRef]
  16. H. Renner, M. Krause, and E. Brinkmeyer, “Maximal gain and optimal taper design for Raman amplifiers in silicon-on-insulator Waveguides,” in Integrated Photonics Research and Applications Topical Meeting, San Diego, California, April 11–13. Joint IPRA/NPIS Oral Session: Frontiers in Nanophotonics (paper JWA3), (2005).
  17. H. Renner and M. Krause, “Maximal total gain of non-tapered silicon-on-insulator Raman amplifiers,” in Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications, OSA Technical Digest Series(CD) (Optical Society of America, 2006), paper OMD2.
  18. E. K. Tien, F. Qian, N. S. Yuksek, and O. Boyraz, “Influence of nonlinear loss competition on pulse compression and nonlinear optics in silicon,” Appl. Phys. Lett.91, 201115 (2007). [CrossRef]
  19. E. K. Tien, N. S. Yuksek, F. Qian, and O. Boyraz, “Effect of TPA and FCA interplay on pulse compression in silicon,” in 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society 2007, Lake Buena Vista, Fl, paper ThY2, 2007. [CrossRef]
  20. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 μ femtosecond pulses,” Opt. Express14, 8336–8346 (2006). [CrossRef] [PubMed]
  21. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett.32, 2031–2033 (2007). [CrossRef] [PubMed]
  22. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15, 16604–16644 (2007). [CrossRef] [PubMed]
  23. X. Chen, N. C. Panoiu, and R. M. Osgood, “Theory of Raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE J. Quantum Electron.42, 160–170 (2006). [CrossRef]
  24. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express14, 5524–5534 (2006). [CrossRef] [PubMed]
  25. I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “ Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express14, 12380–12387 (2006). [CrossRef] [PubMed]
  26. J. I. Dadap, N. C. Panoiu, X. G. Chen, I. W. Hsieh, X. P. Liu, C. Y. Chou, E. Dulkeith, S. J. McNab, F. N. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood, “Nonlinear-optical phase modification in dispersion-engineered Si photonic wires,” Opt. Express16, 1280–1299 (2008). [CrossRef] [PubMed]
  27. S. V. Afshar and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express17, 2298–2318 (2009). [CrossRef]
  28. M. D. Turner, T. M. Monro, and S. V. Afshar, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part II: Stimulated Raman Scattering,” Opt. Express17, 11565–11581 (2009). [CrossRef] [PubMed]
  29. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. W. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon.1, 162–235 (2009). [CrossRef]
  30. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal “Nonlinear propagation in silicon-based plasmonic waveguides from the standpoint of applications,” Opt. Express19, 206–217 (2011). [CrossRef] [PubMed]
  31. N. Suzuki, “FDTD analysis of two-photon absorption and free-carrier absorption in Si high-index-contrast waveguides,” J. Lightwave Technol.25, 2495–2501 (2007). [CrossRef]
  32. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron.16, 200–215 (2010). [CrossRef]
  33. S. Roy, S. K. Bhadra, and G. P. Agrawal, “Femtosecond pulse propagation in silicon waveguides: variational approach and its advantages,” Opt. Commun.281, 5889–5893 (2008). [CrossRef]
  34. I. D. Rukhlenko, M. Premaratne, C. Dissanayake, and G. P. Agrawal, “Nonlinear pulse evolution in silicon waveguides: an approximate analytic approach,” J. Lightwave Technol.27, 3241–3248 (2009). [CrossRef]
  35. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express20, 1685–1690 (2012). [CrossRef] [PubMed]
  36. Y. Liu and H. K. Tsang, “Time dependent density of free carriers generated by two photon absorption in silicon waveguides,” Appl. Phys. Lett.90, 211105 (2007). [CrossRef]
  37. E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen: Gewöhnliche Differentialgleichungen I. (B. G. Teubner, Stuttgart, 1983), p. 298, Eq. (1.34).
  38. T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “Nonlinear self-distortion of picosecond optical pulses in silicon wire waveguides,” in Conference on Lasers and Electro-Optics (CLEO) 2006, 21–26 May 2006, Long Beach, paper JThC44.
  39. I. S. Gradstein and I. M. Ryshik, Table of Integrals, Series and Products (Academic Press, Boston, 1994) p. 104.
  40. R. Dekker, N. Usechak, M. Först, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D: Appl. Phys.40, R249–R271 (2007). [CrossRef]
  41. G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, Amsterdam, 2007).
  42. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science326, 1074–1077 (2009). [CrossRef] [PubMed]
  43. N. Akhmediev and A. Ankiewicz, Dissipative Solitons (Springer, Heidelberg, 2005). [CrossRef]
  44. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express12, 5269 – 5273 (2004). [CrossRef] [PubMed]
  45. B. Jalali, V. Raghunathan, D. Dimitropoulos, and Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12, 412–421 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited