OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 23 — Nov. 5, 2012
  • pp: 25752–25757

Terahertz generation by optical rectification in lithium niobate crystal using a shadow mask

Yuri Avestisyan, Caihong Zhang, Iwao Kawayama, Hironaru Murakami, Toshihiro Somekawa, Haik Chosrowjan, Masayuki Fujita, and Masayoshi Tonouchi  »View Author Affiliations


Optics Express, Vol. 20, Issue 23, pp. 25752-25757 (2012)
http://dx.doi.org/10.1364/OE.20.025752


View Full Text Article

Enhanced HTML    Acrobat PDF (1001 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple approach to generate high energy, frequency and bandwidth tunable multicycle THz pulses by optical rectification (OR) of spatially shaped femtosecond laser pulses in the lithium niobate (LN) crystal is proposed and demonstrated. A one dimensional binary shadow mask is used as a laser beam shaper. By building the mask’s image in the bulk LN crystal with various demagnifications, the frequency of THz generation was tuned in the range of 0.3 – 1.2 THz. There exist also an opportunity to tune the bandwidth of THz generation from 20 GHz to approximately 1 THz by changing the optical beam size on the crystal. The energy spectral density of narrowband THz generation is almost independent of the bandwidth and is typically 0.18 μJ/THz for ~1 W pump power at 1 kHz repetition rate.

© 2012 OSA

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(260.3090) Physical optics : Infrared, far

ToC Category:
Ultrafast Optics

History
Original Manuscript: September 5, 2012
Revised Manuscript: October 23, 2012
Manuscript Accepted: October 23, 2012
Published: October 30, 2012

Citation
Yuri Avestisyan, Caihong Zhang, Iwao Kawayama, Hironaru Murakami, Toshihiro Somekawa, Haik Chosrowjan, Masayuki Fujita, and Masayoshi Tonouchi, "Terahertz generation by optical rectification in lithium niobate crystal using a shadow mask," Opt. Express 20, 25752-25757 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-23-25752


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007). [CrossRef]
  2. G. Kh. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett.5(8), 559–576 (2008). [CrossRef]
  3. Y. Jiang, D. Li, Y. J. Ding, and I. B. Zotova, “Terahertz generation based on parametric conversion: from saturation of conversion efficiency to back conversion,” Opt. Lett.36(9), 1608–1610 (2011). [CrossRef] [PubMed]
  4. Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett.30(21), 2927–2929 (2005). [CrossRef] [PubMed]
  5. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett.76(18), 2505–2507 (2000). [CrossRef]
  6. J. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate,” Appl. Phys. B86(2), 185–196 (2007). [CrossRef]
  7. A. G. Stepanov, J. Hebling, and J. Kuhl, “Generation, tuning, and shaping of narrowband, picosecond THz pulses by two-beam excitation,” Opt. Express12(19), 4650–4658 (2004). [CrossRef] [PubMed]
  8. J. Ahn, A. V. Efimov, R. D. Averitt, and A. J. Taylor, “Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses,” Opt. Express11(20), 2486–2496 (2003). [CrossRef] [PubMed]
  9. Z. Chen, X. Zhou, C. A. Werley, and K. A. Nelson, “Generation of high power tunable multicycle teraherz pulses,” Appl. Phys. Lett.99(7), 071102 (2011). [CrossRef]
  10. Y.-S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett.77(9), 1244–1246 (2000). [CrossRef]
  11. C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett.26(8), 563–565 (2001). [CrossRef] [PubMed]
  12. C. Zhang, Y. Avetisyan, A. Glosser, I. Kawayama, H. Murakami, and M. Tonouchi, “Bandwidth tunable THz wave generation in large-area periodically poled lithium niobate,” Opt. Express20(8), 8784–8790 (2012). [CrossRef] [PubMed]
  13. L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys.97(12), 123505 (2005). [CrossRef]
  14. K. L. Vodopyanov, “Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format,” Opt. Express14(6), 2263–2276 (2006). [CrossRef] [PubMed]
  15. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % MgO-doped lithium niobate,” J. Opt. Soc. Am. B14(12), 3319–3322 (1997). [CrossRef]
  16. A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett.64(2), 137–139 (1994). [CrossRef]
  17. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B25(7), B6–B19 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited